满分5 > 高中数学试题 >

由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y=...

由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y=f-1(x)能确定数列bn,bn=f-1(n)若对于任意n∈N*都有bn=an,则称数列{bn}是数列{an}的“自反函数列”
(1)设函数f(x)=manfen5.com 满分网,若由函数f(x)确定的数列{an}的自反数列为{bn},求an
(2)已知正整数列{cn}的前项和sn=manfen5.com 满分网(cn+manfen5.com 满分网).写出Sn表达式,并证明你的结论;
(3)在(1)和(2)的条件下,d1=2,当n≥2时,设dn=manfen5.com 满分网,Dn是数列{dn}的前n项和,且Dn>loga(1-2a)恒成立,求a的取值范围.
【解析】 (1)由f(x)=结合bn=f-1(n)若对于任意n∈N*都有bn=an求解, (2)由正整数cn的前n项和则由通项与前n项和之间的关系求解,要注意分类讨论; (3)在(1)和(2)的条件下,d1=2,∴D1=2,则n≥2时,,由Dn是数列dn的前n项和有Dn=1+d2+…+dn用裂项相消法求解,再由Dn>loga(1-2a)恒成立,即loga(1-2a)小于Dn的最小值,只要求得Dn的最小值即可. 【解析】 (1)由题意得 ∵ ∴P=-1∴ (2)∵正整数cn的前n项和 ∴ 解之得∴c1=1,s1=1 当n≥2时,cn=sn-sn-1 ∴ ∴ sn2-sn-12=n ∴sn-12-sn-22=n-1 sn-22-sn-22=n-2 s22-s12=2 以上各式累加,得∴, (3)在(1)和(2)的条件下,d1=2∴D1=2 当n≥2时,设,由Dn是数列dn的前n项和 有Dn=1+d2+…+dn = = 综上 因为Dn>loga(1-2a)恒成立,所以loga(1-2a)小于Dn的最小值, 显然Dn的最小值在n=1时取得,即[Dn]min=2 ∴loga(1-2a)<2 ∴a满足的条件是 ,∴loga(1-2a)<2 解得
复制答案
考点分析:
相关试题推荐
在平面直角坐标系xOy中,设点P(x,y),M(x,-4)以线段PM为直径的圆经过原点O.
(1)求动点P的轨迹W的方程;
(2)过点E(0,-4)的直线l与轨迹W交于两点A,B,点A关于y轴的对称点为A,试判断直线AB是否恒过一定点,并证明你的结论.
查看答案
设函数f(x)=x2-2tx+4t3+t2-3t+3,其中x∈R,t∈R,将f(x)的最小值记为g(t).
(1)求g(t)的表达式;
(2)讨论g(t)在区间[-1,1]内的单调性;
(3)若当t∈[-1,1]时,|g(t)|≤k恒成立,其中k为正数,求k的取值范围.
查看答案
统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:manfen5.com 满分网x+8(0<x≤120).已知甲、乙两地相距100千米.
(I)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
查看答案
如图,在正三棱柱ABC-A1B1C1中,D、E、G分别是AB、BB1、AC1的中点,AB=BB1=2.
(Ⅰ)在棱B1C1上是否存在点F使GF∥DE?如果存在,试确定它的位置;如果不存在,请说明理由;
(Ⅱ)求截面DEG与底面ABC所成锐二面角的正切值;
(Ⅲ)求B1到截面DEG的距离.

manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网manfen5.com 满分网共线,其中A是△ABC的内角.
(1)求角A的大小;
(2)若BC=2,求△ABC面积S的最大值,并判断S取得最大值时△ABC的形状.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.