数列{a
n}是首项为a
1,公差为d的等差数列,若数列{a
n}中任意不同的两项之和仍是该数列的一项,则称该数列是“封闭数列”
(1)试写出一个不是“封闭数列”的等差数列的通项公式,并说明理由;
(2)求证:数列{a
n}为“封闭数列”的充分必要条件是存在整数m≥-1,使a
1=md.
考点分析:
相关试题推荐
已知椭圆的C两个焦点分别为F
1(0,-1),F
2(0,1),离心率
,P是椭圆C在第一象限内的一点,且|PF
1|-|PF
2|=1.
(1)求椭圆C的标准方程;
(2)求点P的坐标;
(3)若点Q是椭圆C上不同于P的另一点,问是否存在以PQ为直径的圆G过点F
2?若存在,求出圆G的方程,若不存在,说明理由.
查看答案
某厂家拟在2011年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)t万件与年促销费用x万元(x≥a,a为一个正常数)满足
,已知2011年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定和再投入两部分资金).
(1)将2011年该产品的利润y万元表示为年促销费用x万元的函数;(注:利润=销售收入-总成本)
(2)该厂家2011年投入的促销费用为多少万元时,厂家的利润最大?
查看答案
如图,沿等腰直角三角形ABC的中位线DE,将平面ADE折起(转动一定角度),得到四棱锥A-BCDE,设CD、BE、AE、AD的中点分别为M、N、P、Q,平面ADE⊥平面BCDE.
(1)求证:平面ABC⊥平面ACD;
(2)求证:M、N、P、Q四点共面;
(3)求异面直线BE与MQ所成的角.
查看答案
某中学号召学生在今年暑假期间至少参加一次社会公益活动(以下简称活动).该校学生会共有100名学生,他们参加活动的次数统计如下表:
用分层抽样的方法从中抽取10人作为样本,将这个样本作为总体.
(1)从样本任意选两名学生,求至少有一个参加了2次活动的概率;
(2)从样本任意选一名学生,若抽到的学生参加了2次活动,则抽取结束,若不是,则放回重聚,求恰好在第4次抽取后结束的概率.
查看答案
已知函数f(x)=
cos(ωx-
)+cos(ωx+π)(ω>0)图象的相邻两条对称轴之间的距离等于π.
(1)求f(x)的表达式;(要写出推导过程)
(2)若B是直角三角形ABC的内角,求f(B)的值域.
查看答案