满分5 > 高中数学试题 >

已知x=1是函数f(x)=mx3-3(m+1)x2+nx+1的一个极值点,其中m...

已知x=1是函数f(x)=mx3-3(m+1)x2+nx+1的一个极值点,其中m,n∈R,m<0.
(Ⅰ)求m与n的关系表达式;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)当x∈[-1,1]时,函数y=f(x)的图象上任意一点的切线斜率恒大于3m,求m的取值范围.
(Ⅰ)求出f′(x),因为x=1是函数的极值点,所以得到f'(1)=0求出m与n的关系式; (Ⅱ)令f′(x)=0求出函数的极值点,讨论函数的增减性确定函数的单调区间; (Ⅲ)函数图象上任意一点的切线斜率恒大于3m即f′(x)>3m代入得到不等式即3m(x-1)[x-(1+)]>3m,又因为m<0,分x=1和x≠1,当x≠1时g(t)=t-,求出g(t)的最小值.要使<(x-1)-恒成立即要g(t)的最小值>,解出不等式的解集求出m的范围. 【解析】 (Ⅰ)f′(x)=3mx2-6(m+1)x+n. 因为x=1是f(x)的一个极值点,所以f'(1)=0,即3m-6(m+1)+n=0. 所以n=3m+6. (Ⅱ)由(Ⅰ)知f′(x)=3mx2-6(m+1)x+3m+6=3m(x-1)[x-(1+)] 当m<0时,有1>1+,当x变化时f(x)与f'(x)的变化如下表: 由上表知,当m<0时,f(x)在(-∞,1+)单调递减,在(1+,1)单调递增,在(1,+∞)单调递减. (Ⅲ)由已知,得f′(x)>3m,即3m(x-1)[x-(1+)]>3m, ∵m<0.∴(x-1)[x-1(1+)]<1.(*) 1x=1时.(*)式化为0<1怛成立. ∴m<0. 2x≠1时∵x∈[-1,1],∴-2≤x-1<0. (*)式化为<(x-1)-. 令t=x-1,则t∈[-2,0),记g(t)=t-, 则g(t)在区间[-2,0)是单调增函数.∴g(t)min=g(-2)=-2-=-. 由(*)式恒成立,必有<-⇒-<m,又m<0.∴-<m<0. 综上1、2知-<m<0.
复制答案
考点分析:
相关试题推荐
定义在R上的单调函数f(x)满足f(3)=log23且对任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)求证f(x)为奇函数;
(2)若f+f(3x-9x-2)<0对任意x∈R恒成立,求实数k的取值范围.
查看答案
为了迎接2010年10月1日国庆节,某城市为举办的大型庆典活动准备了四种保证安全的方案,列表如下:
方案ABCD
经费300万元400万元500万元600万元
安全系数0.60.70.80.9
其中安全系数表示实施此方案能保证安全的系数,每种方案相互独立,每种方案既可独立用,又可以与其它方案合用,合用时,至少有一种方案就能保证整个活动的安全
(I)求A、B两种方案合用,能保证安全的概率;
(II)若总经费在1200万元内(含1200万元),如何组合实施方案可以使安全系数最高?
查看答案
如图,在四棱锥P-ABCD中,底面ABCD是矩形,M、N分别为PA、BC的中点,PD⊥平面ABCD,且PD=AD=manfen5.com 满分网,CD=1.
(1)证明:MN∥平面PCD;
(2)证明:MC⊥BD;
(3)求二面角A-PB-D的余弦值.

manfen5.com 满分网 查看答案
设命题p:实数x满足x2-4ax+3a2<0,其中a>0,命题q:实数x满足manfen5.com 满分网
(Ⅰ)若a=1,且p∧q为真,求实数x的取值范围;
(Ⅱ)若¬p是¬q的充分不必要条件,求实数a的取值范围.
查看答案
已知集合manfen5.com 满分网,若A∩B=∅,求实数a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.