首先分析题目要求满足:“对于区间(0,1)上的任意实数x1,x2(x1≠x2),|f(x2)-f(x1)|<|x2-x1|恒成立”的函数,即找满足在(0,1)上任意两点的斜率对值小于等于1的函数.
【解析】
对于(1):,|f(x2)-f(x1)|==>|x2-x1|(因为x1,x2在区间(0,1)上,故x1x2小于1),故不符合题意;
对于(2):f(x)=x3-x,|f(x1)-f(x2)|=|x13-x1-x23+x2|=|x1-x2|•|(x12+x1x2+x22)-1|≤|x1-x2|成立,故符合题意;
对于(3):f(x)=cosx,|f(x1)-f(x2)|=|cosx1-cosx2|≤|x1-x2|,可根据在(0,1)上任意两点的斜率绝对值小于等于1可知成立,故符合题意;
对于(4):f(x)=,可根据在(0,1)上任意两点的斜率对值小于等于1,可知|f(x1)-f(x2)|≤|x1-x2|成立,故符合题意;
对于(5):f(x)=log2x,可根据在(0,1)上任意两点的斜率对值大于1,可知|f(x1)-f(x2)|≤|x1-x2|不成立,故不符合题意;
故答案为:(2)(3)(4)