满分5 > 高中数学试题 >

已知函数f(x)=,其中,=(cosωx-sinωx,2sinωx),其中ω>0...

已知函数f(x)=manfen5.com 满分网,其中manfen5.com 满分网manfen5.com 满分网=(cosωx-sinωx,2sinωx),其中ω>0,若f(x)相邻两对称轴间的距离不小于manfen5.com 满分网
(Ⅰ)求ω的取值范围;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,a=manfen5.com 满分网,b+c=3,当ω最大时,f(A)=1,求△ABC的面积.
(I)利用向量的数量积的坐标表示及二倍角公式对函数整理可得,,根据周期公式可得,根据正弦函数的性质相邻两对称轴间的距离即为,从而有代入可求ω的取值范围. (Ⅱ)由(Ⅰ)可知ω的最大值为1,由f(A)=1可得,结合已知可得,由余弦定理知可得b2+c2-bc=3,又b+c=3联立方程可求b,c,代入面积公式可求 也可用配方法∵求得bc=2,直接代入面积公式可求 【解析】 (Ⅰ)f(x)= cosωx•sinωx=cos2ωx+sin2ωx= ∵ω>0 ∴函数f(x)的周期T=,由题意可知, 解得0<ω≤1,即ω的取值范围是ω|0<ω≤1 (Ⅱ)由(Ⅰ)可知ω的最大值为1, ∴ ∵f(A)=1 ∴ 而π ∴2A+π ∴A= 由余弦定理知cosA= ∴b2+c2-bc=3,又b+c=3 联立解得 ∴S△ABC= (或用配方法∵ ∴bc=2 ∴.
复制答案
考点分析:
相关试题推荐
已知函数:(1)manfen5.com 满分网;(4)manfen5.com 满分网;(5)f(x)=log2x
其中f(x)对于区间(0,1)上的任意两个值x1,x2(x1≠x2),恒有|f(x1)-f(x2)|≤|x1-x2|成立的函数序号是    (请把你认为正确的函数序号都填上). 查看答案
若实数x、y满足不等式组manfen5.com 满分网,则manfen5.com 满分网的取值范围是    查看答案
如图,AC1是正方体的一条对角线,点P、Q分别为其所在棱的中点,则异面直线PQ与AC1所成的角为   
manfen5.com 满分网 查看答案
设点P(x,y)是函数y=tanx与y=-x(x>0)的图象的一个交点,则(x2+1)(cos2x+1)=    查看答案
设(1+x+y)x的展开式的不含x项的系数和为ax,则manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.