满分5 > 高中数学试题 >

设f(x)是定义在R上的奇函数,在(-∞,0)上有2xf′(2x)+f(2x)<...

设f(x)是定义在R上的奇函数,在(-∞,0)上有2xf′(2x)+f(2x)<0且f(-2)=0,则不等式xf(2x)<0的解集为   
由题意构造函数g(x)=xf (2x),再由导函数的符号判断出函数g(x)的单调性,由函数f(x)的奇偶性得到函数g(x)的奇偶性,由f(-2)=0得g(1)=0、还有g(0)=0,再通过奇偶性进行转化,利用单调性求出不等式的解集. 【解析】 设g(x)=xf(2x),则g'(x)=[xf(2x)]'=x'f(2x)+2xf'(2x)=2xf′(2x)+f(2x)<0, ∴函数g(x)在区间(-∞,0)上是减函数, ∵f(x)是定义在R上的奇函数, ∴g(x)=xf(2x)是R上的偶函数, ∴函数g(x)在区间(0,+∞)上是增函数, ∵f(-2)=0, ∴f(2)=0; 即g(1)=0且g(0)=0f(0)=0, ∴xf(2x)<0化为g(x)<0, ∵对于偶函数g(x),有g(-x)=g(x)=g(|x|), 故不等式为g(|x|)<g(1), ∵函数g(x)在区间(0,+∞)上是增函数, ∴|x|<1且x≠0,解得-1<x<1且x≠0, 故所求的解集为{x|-1<x<1且x≠0}. 故答案为:{x|-1<x<1且x≠0}.
复制答案
考点分析:
相关试题推荐
函数y=loga(x+3)-1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,则manfen5.com 满分网+manfen5.com 满分网的最小值为    查看答案
函数y=log2(x+1)的图象与y=f(x)的图象关于直线x=1对称,则f(x)的表达式是    查看答案
给出下列四个命题:
①函数y=ax(a>0且a≠1)与函数y=logaax(a>0且a≠1)的定义域相同;
②函数y=x3与y=3x的值域相同;
③函数manfen5.com 满分网manfen5.com 满分网都是奇函数;
④函数y=(x-1)2与y=2x-1在区间[0,+∞)上都是增函数,其中正确命题的序号是( )
A.(1)(3)
B.(1)(4)
C.(2)(3)
D.(2)(4)
查看答案
已知manfen5.com 满分网是(-∞,+∞)上的减函数,那么a的取值范围是( )
A.(0,1)
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
函数f[lg(x+1)]的定义域是[0,9],则函数f(x2)的定义域为( )
A.[0,1]
B.[-3,3]
C.[0,3]
D.[-1,1]
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.