满分5 > 高中数学试题 >

如图,长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,点P为DD...

manfen5.com 满分网如图,长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点.
(1)求证:直线BD1∥平面PAC;
(2)求证:平面PAC⊥平面BDD1
(3)求证:直线PB1⊥平面PAC.
(1)利用三角形中位线的性质证明PO∥BD1,进而得到线BD1∥平面PAC. (2)由底面ABCD是正方形,则AC⊥BD,再由DD1⊥AC,得到AC⊥面BDD1,这样在平面PAC内找到了2条直线和平面BDD1垂直,问题得证. (3)△PB1C中,先求出三边的长度,使用勾股定理可得PB1⊥PC,同理可证PB1⊥PA,这样,PB1垂直于平面PAC的2条相交直线,所以直线PB1⊥平面PAC. 【解析】 (1)设AC和BD交于点O,连PO, 由P,O分别是DD1,BD的中点,故PO∥BD1, 所以直线BD1∥平面PAC. (2)长方体ABCD-A1B1C1D1中,AB=AD=1, 底面ABCD是正方形,则AC⊥BD 又DD1⊥面ABCD,则DD1⊥AC, 所以AC⊥面BDD1,则平面PAC⊥平面BDD1 (3)PC2=2,PB12=3,B1C2=5,所以△PB1C是直角三角形.PB1⊥PC, 同理PB1⊥PA,所以直线PB1⊥平面PAC.(12分)
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网(ω>0)的最小正周期为π.
(Ⅰ)求ω的值;
(Ⅱ)求函数f(x)在区间manfen5.com 满分网上的取值范围.
查看答案
已知{an}是一个等差数列,且a2=1,a5=-5.
(Ⅰ)求{an}的通项an
(Ⅱ)求{an}前n项和Sn的最大值.
查看答案
如图,⊙O的直径AB=6cm,P是AB延长线上的一点,过P点作⊙O的切线,切点为C,连接AC,若∠CPA=30°,PC=______

manfen5.com 满分网 查看答案
曲线的极坐标方程ρ=4sinθ化为直角坐标方程为    查看答案
某公司生产三种型号的轿车,产量分别为1200辆、6000辆和2000辆,为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取    辆、    辆、    辆. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.