满分5 > 高中数学试题 >

已知圆C:x2+y2=12,直线l:4x+3y=25. (1)圆C的圆心到直线l...

已知圆C:x2+y2=12,直线l:4x+3y=25.
(1)圆C的圆心到直线l的距离为   
(2)圆C上任意一点A到直线l的距离小于2的概率为   
(1)根据所给的圆的标准方程,看出圆心,根据点到直线的距离公式,代入有关数据做出点到直线的距离. (2)本题是一个几何概型,试验发生包含的事件是从这个圆上随机的取一个点,对应的圆上整个圆周的弧长,根据题意做出符合条件的弧长对应的圆心角是60°,根据几何概型概率公式得到结果. 【解析】 (1)由题意知圆x2+y2=12的圆心是(0,0), 圆心到直线的距离是d==5, (2)由题意知本题是一个几何概型, 试验发生包含的事件是从这个圆上随机的取一个点,对应的圆上整个圆周的弧长, 满足条件的事件是到直线l的距离小于2,过圆心做一条直线交直线l与一点, 根据上一问可知圆心到直线的距离是5, 在这条垂直于直线l的半径上找到圆心的距离为3的点做半径的垂线, 根据弦心距,半径,弦长之间组成的直角三角形得到符合条件的弧长对应的圆心角是60° 根据几何概型的概率公式得到P== 故答案为:5;
复制答案
考点分析:
相关试题推荐
已知函数f(x)=logax+x-b(a>0,且a≠1).当2<a<3<b<4时,函数f(x)的零点x∈(n,n+1),n∈N*,则n=    查看答案
设g(x)是定义在R上,以1为周期的函数,若函数f(x)=x+g(x)在区间[3,4]上的值域为[-2,5],则f(x)在区间[-10,10]上的值域为    查看答案
如图,已知椭圆C:manfen5.com 满分网(a>b>0)的离心率为manfen5.com 满分网,左、右焦点分别为F1和F2,椭圆C与x轴的两交点分别为A、B,点P是椭圆上一点(不与点A、B重合),且∠APB=2α,∠F1PF2=2β.
(Ⅰ)若β=45°,三角形F1PF2的面积为36,求椭圆C的方程;
(Ⅱ)当点P在椭圆C上运动,试证明tanβ•tan2α为定值.

manfen5.com 满分网 查看答案
已知函数f(x)=(x2-ax)ex(a∈R)
(1)当a=2时,求函数f(x)的单调递减区间.
(2)若函数f(x)在(-1,1)上单调递减,求a的取值范围.
(3)函数f(x)可否为R上的单调函数,若是,求出a的取值范围,若不是,请说明理由.
查看答案
manfen5.com 满分网已知四棱锥P-ABCD的底面ABCD是菱形;PA⊥平面ABCD,PA=AD=AC,点F为PC的中点.
(Ⅰ)求证:PA∥平面BFD;
(Ⅱ)求二面角C-BF-D的正切值.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.