满分5 > 高中数学试题 >

已知函数f(x)=+,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y...

已知函数f(x)=manfen5.com 满分网+manfen5.com 满分网,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.
(Ⅰ)求a、b的值;
(Ⅱ)如果当x>0,且x≠1时,f(x)>manfen5.com 满分网+manfen5.com 满分网,求k的取值范围.
(I)求出函数的导数;利用切线方程求出切线的斜率及切点;利用函数在切点处的导数值为曲线切线的斜率及切点也在曲线上,列出方程组,求出a,b值. (II)将不等式变形,构造新函数,求出新函数的导数,对参数k分类讨论,判断出导函数的符号,得到函数的单调性,求出函数的最值,求出参数k的范围. 【解析】 由题意f(1)=1,即切点坐标是(1,1) (Ⅰ) 由于直线x+2y-3=0的斜率为,且过点(1,1),故 即解得a=1,b=1. (Ⅱ)由(Ⅰ)知,所以 ). 考虑函数(x>0),则 . (i)设k≤0,由知,当x≠1时,h′(x)<0.而h(1)=0,故 当x∈(0,1)时,h′(x)<0,可得; 当x∈(1,+∞)时,h′(x)<0,可得h(x)>0 从而当x>0,且x≠1时,f(x)-(+)>0,即f(x)>+. (ii)设0<k<1.由于当x∈(1,)时,(k-1)(x2+1)+2x>0,故h′(x)>0,而 h(1)=0,故当x∈(1,)时,h(x)>0,可得h(x)<0,与题设矛盾. (iii)设k≥1.此时h′(x)>0,而h(1)=0,故当x∈(1,+∞)时,h(x)>0,可得h(x)<0,与题设矛盾. 综合得,k的取值范围为(-∞,0]
复制答案
考点分析:
相关试题推荐
已知函数f(x)=a•2x+b•3x,其中常数a,b 满足a•b≠0
(1)若a•b>0,判断函数f(x) 的单调性;
(2)若a•b<0,求f(x+1)>f(x) 时的x 的取值范围.
查看答案
设m>1,在约束条件manfen5.com 满分网下,目标函数z=x+my的最大值小于2,则m 的取值范围为( )
A.(1,manfen5.com 满分网
B.(manfen5.com 满分网,+∞)
C.(1,3)
D.(3,+∞)
查看答案
函数manfen5.com 满分网的图象大致是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
函数manfen5.com 满分网的图象是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
设S是整数集Z的非空子集,如果∀a,b∈S有ab∈S,则称S关于数的乘法是封闭的,若T,V是Z的两个不相交的非空子集,T∪V=Z,且∀a,b,c∈T,有abc∈T;∀x,y,z∈V,有xyz∈V,则下列结论恒成立的是( )
A.T,V中至少有一个关于乘法是封闭的
B.T,V中至多有一个关于乘法是封闭的
C.T,V中有且只有一个关于乘法是封闭的
D.T,V中每一个关于乘法都是封闭的
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.