满分5 > 高中数学试题 >

如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上.椭圆C2的短轴为...

manfen5.com 满分网如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上.椭圆C2的短轴为MN,且C1,C2的离心率都为e.直线l⊥MN.l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A、B、C、D.
(Ⅰ)e=manfen5.com 满分网,求|BC|与|AD|的比值;
(Ⅱ)当e变化时,是否存在直线l,使得BO∥AN,并说明理由.
(Ⅰ)先利用离心率相同,把两椭圆方程设出来,与直线l联立求出A、B的坐标,再利用椭圆图象的对称性求出|BC|与|AD|的长,即可求|BC|与|AD|的比值; (Ⅱ)BD∥AN,即是BO的斜率kBO与AN的斜率kAN相等,利用斜率相等得到关于t和a以及e的等式,再利用|t|<a和0<e<1就可求出何时BD∥AN. 【解析】 (I)因为C1,C2的离心率相同, 故依题意可设, 设直线l:x=t(|t|<a),分别与C1,C2的方程联立, 求得,(4分) 当,,分别用yA,yB表示的A,B的纵坐标, 可知(6分) (Ⅱ)t=0时的l不符合题意,t≠0时, BO∥AN当且仅当BO的斜率kBO与AN的斜率kAN相等, 即, 解t=-=-•a; 因为|t|<a,又0<e<1,所以-1<-,解得 所以当0<e≤时,不存在直线l,使得BO∥AN; 当时,存在直线l,使得BO∥AN.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=manfen5.com 满分网+manfen5.com 满分网,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.
(Ⅰ)求a、b的值;
(Ⅱ)如果当x>0,且x≠1时,f(x)>manfen5.com 满分网+manfen5.com 满分网,求k的取值范围.
查看答案
已知函数f(x)=a•2x+b•3x,其中常数a,b 满足a•b≠0
(1)若a•b>0,判断函数f(x) 的单调性;
(2)若a•b<0,求f(x+1)>f(x) 时的x 的取值范围.
查看答案
设m>1,在约束条件manfen5.com 满分网下,目标函数z=x+my的最大值小于2,则m 的取值范围为( )
A.(1,manfen5.com 满分网
B.(manfen5.com 满分网,+∞)
C.(1,3)
D.(3,+∞)
查看答案
函数manfen5.com 满分网的图象大致是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
函数manfen5.com 满分网的图象是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.