满分5 > 高中数学试题 >

已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f'(x)和g...

已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f'(x)和g'(x)是f(x),g(x)的导函数,若f'(x)g'(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致
(1)设a>0,若函数f(x)和g(x)在区间[-1,+∞)上单调性一致,求实数b的取值范围;
(2)设a<0,且a≠b,若函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,求|a-b|的最大值.
(1)先求出函数f(x)和g(x)的导函数,再利用函数f(x)和g(x)在区间[-1,+∞)上单调性一致即f'(x)g'(x)≥0在[-1,+∞)上恒成立,以及3x2+a>0,来求实数b的取值范围; (2)先求出f'(x)=0的根以及g'(x)=0的根,再分别求出两个函数的单调区间,综合在一起看何时函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,进而求得|a-b|的最大值. 【解析】 f'(x)=3x2+a,g'(x)=2x+b. (1)由题得f'(x)g'(x)≥0在[-1,+∞)上恒成立.因为a>0,故3x2+a>0, 进而2x+b≥0,即b≥-2x在[-1,+∞)上恒成立,所以b≥2. 故实数b的取值范围是[2,+∞) (2)令f'(x)=0,得x=. 若b>0,由a<0得0∈(a,b).又因为f'(0)g'(0)=ab<0, 所以函数f(x)和g(x)在(a,b)上不是单调性一致的. 因此b≤0. 现设b≤0,当x∈(-∞,0)时,g'(x)<0; 当x∈(-∝,-)时,f'(x)>0. 因此,当x∈(-∝,-)时,f'(x)g'(x)<0.故由题设得a≥-且b≥-, 从而-≤a<0,于是-<b<0,因此|a-b|≤,且当a=-,b=0时等号成立, 又当a=-,b=0时,f'(x)g'(x)=6x(x2-),从而当x∈(-,0)时f'(x)g'(x)>0. 故函数f(x)和g(x)在(-,0)上单调性一致,因此|a-b|的最大值为.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上.椭圆C2的短轴为MN,且C1,C2的离心率都为e.直线l⊥MN.l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A、B、C、D.
(Ⅰ)e=manfen5.com 满分网,求|BC|与|AD|的比值;
(Ⅱ)当e变化时,是否存在直线l,使得BO∥AN,并说明理由.
查看答案
已知函数f(x)=manfen5.com 满分网+manfen5.com 满分网,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.
(Ⅰ)求a、b的值;
(Ⅱ)如果当x>0,且x≠1时,f(x)>manfen5.com 满分网+manfen5.com 满分网,求k的取值范围.
查看答案
已知函数f(x)=a•2x+b•3x,其中常数a,b 满足a•b≠0
(1)若a•b>0,判断函数f(x) 的单调性;
(2)若a•b<0,求f(x+1)>f(x) 时的x 的取值范围.
查看答案
设m>1,在约束条件manfen5.com 满分网下,目标函数z=x+my的最大值小于2,则m 的取值范围为( )
A.(1,manfen5.com 满分网
B.(manfen5.com 满分网,+∞)
C.(1,3)
D.(3,+∞)
查看答案
函数manfen5.com 满分网的图象大致是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.