满分5 > 高中数学试题 >

设b>0,数列{an}满足a1=b,an=(n≥2). (1)求数列{an}的通...

设b>0,数列{an}满足a1=b,an=manfen5.com 满分网(n≥2).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,anmanfen5.com 满分网+1.
(1)首先要根据条件变形递推公式得:,然后通过换元的方法分析得数列是等比数列,其中.从而可以求得数列{bn}的通项公式,进而即可求得数列{an}的通项公式; (2)首先要利用基本不等式获得b2n+b2n-1•2+…+bn+1•2n-1+bn-1•2n+1+…+b•22n-1+22n≥n•2n+1•bn,然后对数列{an}的通项公式变形然后利用所获得的不等式放缩化简即可获得问题的解答. 【解析】 (1)由题意知: , ∴, 设,则 设,则, 当b=2时,, ∴为首项是,公差是的等差数列. ∴an=2. 当b≠2时, 令,∴, ∴, ∴是等比数列. ∴, 又∵, ∴, ∴. 综上可知: 当b=2时,an=2. 当b≠2时, (2)当b=2时,由(1)知命题显然成立; 当b≠2时, ∵ … 将以上n个式子相加得: b2n+b2n-1•2+…+bn+1•2n-1+bn-1•2n+1+…+b•22n-1+22n>n•2n+1•bn ∴ = = =. 综上可知: .
复制答案
考点分析:
相关试题推荐
如图,长方形物体E在雨中沿面P(面积为S)的垂直方向作匀速移动,速度为v(v>0),雨速沿E移动方向的分速度为c(c∈R).E移动时单位时间内的淋雨量包括两部分:(1)P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与|v-c|×S成正比,比例系数为manfen5.com 满分网;(2)其它面的淋雨量之和,其值为manfen5.com 满分网,记y为E移动过程中的总淋雨量,当移动距离d=100,面积S=manfen5.com 满分网时.
(Ⅰ)写出y的表达式
(Ⅱ)设0<v≤10,0<c≤5,试根据c的不同取值范围,确定移动速度v,使总淋雨量y最少.

manfen5.com 满分网 查看答案
已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f'(x)和g'(x)是f(x),g(x)的导函数,若f'(x)g'(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致
(1)设a>0,若函数f(x)和g(x)在区间[-1,+∞)上单调性一致,求实数b的取值范围;
(2)设a<0,且a≠b,若函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,求|a-b|的最大值.
查看答案
manfen5.com 满分网如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上.椭圆C2的短轴为MN,且C1,C2的离心率都为e.直线l⊥MN.l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A、B、C、D.
(Ⅰ)e=manfen5.com 满分网,求|BC|与|AD|的比值;
(Ⅱ)当e变化时,是否存在直线l,使得BO∥AN,并说明理由.
查看答案
已知函数f(x)=manfen5.com 满分网+manfen5.com 满分网,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.
(Ⅰ)求a、b的值;
(Ⅱ)如果当x>0,且x≠1时,f(x)>manfen5.com 满分网+manfen5.com 满分网,求k的取值范围.
查看答案
已知函数f(x)=a•2x+b•3x,其中常数a,b 满足a•b≠0
(1)若a•b>0,判断函数f(x) 的单调性;
(2)若a•b<0,求f(x+1)>f(x) 时的x 的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.