已知数列{a
n}与{b
n}满足:
,n∈N
*,且a
1=2,a
2=4.
(Ⅰ)求a
3,a
4,a
5的值;
(Ⅱ)设c
n=a
2n-1+a
2n+1,n∈N
*,证明:{c
n}是等比数列;
(Ⅲ)设S
k=a
2+a
4+…+a
2k,k∈N
*,证明:
.
考点分析:
相关试题推荐
设b>0,数列{a
n}满足a
1=b,a
n=
(n≥2).
(1)求数列{a
n}的通项公式;
(2)证明:对于一切正整数n,a
n≤
+1.
查看答案
如图,长方形物体E在雨中沿面P(面积为S)的垂直方向作匀速移动,速度为v(v>0),雨速沿E移动方向的分速度为c(c∈R).E移动时单位时间内的淋雨量包括两部分:(1)P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与|v-c|×S成正比,比例系数为
;(2)其它面的淋雨量之和,其值为
,记y为E移动过程中的总淋雨量,当移动距离d=100,面积S=
时.
(Ⅰ)写出y的表达式
(Ⅱ)设0<v≤10,0<c≤5,试根据c的不同取值范围,确定移动速度v,使总淋雨量y最少.
查看答案
已知a,b是实数,函数f(x)=x
3+ax,g(x)=x
2+bx,f'(x)和g'(x)是f(x),g(x)的导函数,若f'(x)g'(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致
(1)设a>0,若函数f(x)和g(x)在区间[-1,+∞)上单调性一致,求实数b的取值范围;
(2)设a<0,且a≠b,若函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,求|a-b|的最大值.
查看答案
如图,已知椭圆C
1的中心在原点O,长轴左、右端点M,N在x轴上.椭圆C
2的短轴为MN,且C
1,C
2的离心率都为e.直线l⊥MN.l与C
1交于两点,与C
2交于两点,这四点按纵坐标从大到小依次为A、B、C、D.
(Ⅰ)e=
,求|BC|与|AD|的比值;
(Ⅱ)当e变化时,是否存在直线l,使得BO∥AN,并说明理由.
查看答案
已知函数f(x)=
+
,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.
(Ⅰ)求a、b的值;
(Ⅱ)如果当x>0,且x≠1时,f(x)>
+
,求k的取值范围.
查看答案