满分5 > 高中数学试题 >

已知函数,其中a>0. (Ⅰ)求函数f(x)的单调区间; (Ⅱ)若直线x-y-1...

已知函数manfen5.com 满分网,其中a>0.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(Ⅲ)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最大值.(其中e为自然对数的底数)
(Ⅰ)先求导函数,直接让导函数大于0求出增区间,导函数小于0求出减区间即可; (Ⅱ)直接利用切线的斜率即为切点处的导数值以及切点是直线与曲线的共同点联立方程即可求实数a的值; (Ⅲ)先求出g(x)的导函数,分情况讨论出函数在在区间[1,e]上的单调性,进而求得其在区间[1,e]上的最大值. 【解析】 (Ⅰ)′因为函数, ∴f′(x)== f′(x)>0⇒0<x<2,f′(x)<0⇒x<0,x>2, 故函数在(0,2)上递增,在(-∞,0)和(2,+∞)上递减. (Ⅱ)设切点为(x,y), 由切线斜率k=1=,⇒x3=-ax+2,① 由x-y-1=x--1=0⇒(x2-a)(x-1)=0⇒x=1,x=±. 把x=1代入①得a=1, 把x=代入①得a=1, 把x=-代入①得a=-1, ∵a>0. 故所求实数a的值为1 (Ⅲ)∵g(x)=xlnx-x2f(x)=xlnx-a(x-1), ∴g′(x)=lnx+1-a,且g′(1)=1-a,g′(e)=2-a. 当a<1时,g′(1)>0,g′(e)>0,故g(x)在区间[1,e]上递增,其最大值为g(e)=a+e(1-a); 当1<a<2时,g′(1)<0,g′(e)>0,故g(x)在区间[1,e]上先减后增且g(1)=0,g(e)>0.所以g(x)在区间[1,e]上的最大值为g(e)=a+e(1-a); 当a>2时,g′(1),0,g′(e)<0,g(x)在区间[1,e]上递减,故最大值为g(1)=0.
复制答案
考点分析:
相关试题推荐
设椭圆C1manfen5.com 满分网的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点),如图.若抛物线C2:y=x2-1与y轴的交点为B,且经过F1,F2点.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设M(0,manfen5.com 满分网),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求△MPQ面积的最大值.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网,设正项数列an的首项a1=2,前n 项和Sn满足Sn=f(Sn-1)(n>1,且n∈N*).
(1)求an的表达式;
(2)在平面直角坐标系内,直线ln的斜率为an,且ln与曲线y=x2相切,ln又与y轴交于点Dn(0,bn),当n∈N*时,记manfen5.com 满分网,若manfen5.com 满分网,设Tn=C1+C2+C3+…+Cn,求manfen5.com 满分网
查看答案
如图1,在平面内,ABCD是∠BAD=60°且AB=a的菱形,ADD''A1和CDD'C1都是正方形.将两个正方形分别沿AD,CD折起,使D''与D'重合于点D1.设直线l过点B且垂直于菱形ABCD所在的平面,点E是直线l上的一个动点,且与点D1位于平面ABCD同侧,设BE=t(t>0)(图2).
(1)设二面角E-AC-D1的大小为q,若manfen5.com 满分网,求t的取值范围;
(2)在线段D1E上是否存在点P,使平面PA1C1∥平面EAC,若存在,求出P分manfen5.com 满分网所成的比λ;若不存在,请说明理由.
manfen5.com 满分网
查看答案
某校选拔若干名学生组建数学奥林匹克集训队,要求选拔过程分前后两次进行,当第一次选拔合格后方可进入第二次选拔,两次选拔过程相互独立.根据甲、乙、丙三人现有的水平,第一次选拔,甲、乙、丙三人合格的概率依次为0.5,0.6,0.4.第二次选拔,甲、乙、丙三人合格的概率依次为0.6,0.5,0.5.
(1)求第一次选拔后甲、乙两人中只有甲合格的概率;
(2)分别求出甲、乙、丙三人经过前后两次选拔后合格的概率;
(3)设甲、乙、丙经过前后两次选拔后合格的人数为ξ,求ξ的概率分布列及Eξ.
查看答案
在△ABC中,a,b,c分别是角A、B、C的对边,manfen5.com 满分网=(b,2a-c),manfen5.com 满分网=(cosB,cosC),且manfen5.com 满分网manfen5.com 满分网
(1)求角B的大小;
(2)设f(x)=cos(ωx-manfen5.com 满分网)+sinx(ω>0),且f(x)的最小正周期为π,求f(x)在区间[0,manfen5.com 满分网]上的最大值和最小值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.