满分5 > 高中数学试题 >

已知函数f(x)=x3-3ax2-9a2x+a3. (1)设a=1,求函数f(x...

已知函数f(x)=x3-3ax2-9a2x+a3
(1)设a=1,求函数f(x)的极值;
(2)若manfen5.com 满分网,且当x∈[1,4a]时,|f′(x)|≤12a恒成立,试确定a的取值范围.
(1)把a=1代入,找出导函数为0的自变量,看在自变量左右两侧导函数的符号来求极值即可. (2)转化为求导函数的绝对值在x∈[1,4a]上的最大值即可. 【解析】 (1)当a=1时,对函数f(x)求导数,得f′(x)=3x2-6x-9. 令f′(x)=0,解得x1=-1,x2=3. 列表讨论f(x),f′(x)的变化情况: 所以,f(x)的极大值是f(-1)=6,极小值是f(3)=-26. (2)f′(x)=3x2-6ax-9a2的图象是一条开口向上的抛物线,关于x=a对称. 若,则f′(x)在[1,4a]上是增函数, 从而(x)在[1,4a]上的最小值是f′(1)=3-6a-9a2,最大值是f′(4a)=15a2. 由|f′(x)|≤12a,得-12a≤3x2-6ax-9a2≤12a,于是有(1)=3-6a-9a2≥-12a,且f′(4a)=15a2≤12a. 由f′(1)≥-12a得-≤a≤1,由f′(4a)≤12a得 所以,即. 若a>1,则∵|f′(a)|=15a2>12a.故当x∈[1,4a]时|f′(x)|≤12a不恒成立. 所以使|f′(x)|≤12a(x∈[1,4a])恒成立的a的取值范围是
复制答案
考点分析:
相关试题推荐
设函数f(x)在定义域D上满足manfen5.com 满分网,且当x,y∈D时,manfen5.com 满分网,若数列{xn}中,manfen5.com 满分网,则数列{f(xn)}的通项公式为    查看答案
若函数f(x)=manfen5.com 满分网在x=1处取极值,则a=    查看答案
若实数x,y满足manfen5.com 满分网则z=2x+y的最大值是     查看答案
manfen5.com 满分网,从大到小的排列顺序为    查看答案
manfen5.com 满分网如图,函数f(x)的图象是折线段ABC,其中A,B,C的坐标分别为(0,4),(2,0),(6,4),则f(f(0))=    manfen5.com 满分网=    .(用数字作答) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.