(1)把不等式的左边减去右边,配方为3个完全平方的和的形式,大于或等于零,从而得到不等式的左边大于或等于右边
(2)根据条件,把要证的不等式等价转化为yz(y-z)2+xz(x-z)2+xy(x-y)2+x2(y-z)2+y2(x-z)2+z2(y-x)2≥0,而此式显然成立,从而不等式得证.
证明:(1)若x,y,z∈R,a,b,c∈R+,
∵-2(xy+yz+xz)=()+()+()
=++≥0,
∴z2≥2(xy+yz+zx)成立.
(2)若x,y,z∈R+,且x+y+z=xyz,要证的不等式等价于≥2(),
等价于 yz(y+z)+xz(x+z)+xy(x+y)≥2(yz+xz+xy),
等价于xyz[yz(y+z)+xz(x+z)+xy(x+y)]≥2(yz+xz+xy)2,
等价于(x+y+z)(y2z+yz2+x2z+xz2+x2y+xy2)≥2(x2y2+z2y2+z2x2)+4(x2yz+y2xz+z2xy),
等价于y3z+yz3+x3z+xz3+x3y+xy3≥2x2yz+2y2xz+2z2xy,
等价于yz(y-z)2+xz(x-z)2+xy(x-y)2+x2(y-z)2+y2(x-z)2+z2(y-x)2≥0.
而上式显然成立,故原不等式成立.
∵上式显然成立,∴原不等式得证.