选修4-4:坐标系与参数方程选讲.
在直角坐标系xOy中,以原点O为极点,以x轴非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系、设曲线C参数方程为
(θ为参数),直线l的极坐标方程为
.
(1)写出曲线C的普通方程和直线l的直角坐标方程;
(2)求曲线C上的点到直线l的最大距离.
考点分析:
相关试题推荐
如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:
(1)∠DEA=∠DFA;
(2)AB
2=BE•BD-AE•AC.
查看答案
已知函数
.
(1)求函数f(x)的单调区间和极值;
(2)求证:当x>1时,f(x)>g(x);
(3)如果x
1≠x
2,且f(x
1)=f(x
2),求证:f(x
1)>f(2-x
2).
查看答案
已知两点A、B分别在直线y=x和y=-x上运动,且
,动点P满足
(O为坐标原点),点P的轨迹记为曲线C.
(1)求曲线C的方程;
(2)过曲线C上任意一点作它的切线l,与椭圆
交于M、N两点,求证:
为定值.
查看答案
如图,在三棱柱ABC-A
1B
1C
1中,AC⊥BC,AB⊥BB
1,AC=BC=BB
1,D为AB的中点,且CD⊥DA
1.
(1)求证:BC
1∥平面DCA
1;
(2)求BC
1与平面ABB
1A
1所成角的大小.
查看答案
某市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0米(精确到0.1米)以上的为合格.把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30.第6小组的频数是7.
(1)求这次铅球测试成绩合格的人数;
(2)若由直方图来估计这组数据的中位数,指出它在第几组内,并说明理由;
(3)若参加此次测试的学生中,有9人的成绩为优秀,现在要从成绩优秀的学生中,随机选出2人参加“毕业运动会”,已知a、b的成绩均为优秀,求两人至少有1人入选的概率.
查看答案