满分5 > 高中数学试题 >

已知中心在原点的双曲线C的右焦点为(2,0),右顶点为 (1)求双曲线C的方程;...

已知中心在原点的双曲线C的右焦点为(2,0),右顶点为manfen5.com 满分网
(1)求双曲线C的方程;
(2)若直线manfen5.com 满分网与双曲线C恒有两个不同的交点A和B,且manfen5.com 满分网(其中O为原点).求k的取值范围.
(1)由双曲线的右焦点与右顶点易知其标准方程中的c、a,进而求得b,则双曲线标准方程即得; (2)首先把直线方程与双曲线方程联立方程组,然后消y得x的方程,由于直线与双曲线恒有两个不同的交点,则关于x的方程必为一元二次方程且判别式大于零,由此求出k的一个取值范围;再根据一元二次方程根与系数的关系用k的代数式表示出xA+xB,xAxB,进而把条件转化为k的不等式,又求出k的一个取值范围,最后求k的交集即可. 【解析】 (1)设双曲线方程为(a>0,b>0). 由已知得. 故双曲线C的方程为. (2)将. 由直线l与双曲线交于不同的两点得 即.① 设A(xA,yA),B(xB,yB), 则, 而=. 于是.② 由①、②得. 故k的取值范围为.
复制答案
考点分析:
相关试题推荐
已知曲线C的方程为kx2+(4-k)y2=k+1(k∈R).
(1)若曲线C是椭圆,求k的取值范围;
(2)若曲线C是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程;
(3)满足(2)的双曲线上是否存在两点P、Q关于直线l:y=x-1对称,若存在,求出过P、Q的直线方程;若不存在,说明理由.
查看答案
求两条渐近线为x+2y=0和x-2y=0且截直线x-y-3=0所得的弦长为manfen5.com 满分网的双曲线方程.
查看答案
以下四个关于圆锥曲线的命题中
①设A、B为两个定点,k为非零常数,|manfen5.com 满分网|-|manfen5.com 满分网|=k,则动点P的轨迹为双曲线;
②设定圆C上一定点A作圆的动点弦AB,O为坐标原点,若manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网+manfen5.com 满分网),则动点P的轨迹为椭圆;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④双曲线manfen5.com 满分网-manfen5.com 满分网=1与椭圆manfen5.com 满分网+y2=1有相同的焦点.
其中真命题的序号为    (写出所有真命题的序号) 查看答案
过双曲线x2-y2=4的右焦点F作倾斜角为105的直线,交双曲线于P、Q两点,则|FP|•|FQ|的值为    查看答案
过双曲线manfen5.com 满分网(a>0,b>0)的左焦点且垂直于x轴的直线与双曲线相交于M、N两点,以MN为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.