设抛物线过定点A(2,0),且以直线x=-2为准线.
(1)求抛物线顶点的轨迹C的方程;
(2)已知点B(0,-5),轨迹C上是否存在满足
•
=0的M、N两点?证明你的结论.
考点分析:
相关试题推荐
已知中心在原点的双曲线C的右焦点为(2,0),右顶点为
(1)求双曲线C的方程;
(2)若直线
与双曲线C恒有两个不同的交点A和B,且
(其中O为原点).求k的取值范围.
查看答案
已知曲线C的方程为kx
2+(4-k)y
2=k+1(k∈R).
(1)若曲线C是椭圆,求k的取值范围;
(2)若曲线C是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程;
(3)满足(2)的双曲线上是否存在两点P、Q关于直线l:y=x-1对称,若存在,求出过P、Q的直线方程;若不存在,说明理由.
查看答案
求两条渐近线为x+2y=0和x-2y=0且截直线x-y-3=0所得的弦长为
的双曲线方程.
查看答案
以下四个关于圆锥曲线的命题中
①设A、B为两个定点,k为非零常数,|
|-|
|=k,则动点P的轨迹为双曲线;
②设定圆C上一定点A作圆的动点弦AB,O为坐标原点,若
=
(
+
),则动点P的轨迹为椭圆;
③方程2x
2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④双曲线
-
=1与椭圆
+y
2=1有相同的焦点.
其中真命题的序号为
(写出所有真命题的序号)
查看答案
过双曲线x
2-y
2=4的右焦点F作倾斜角为105
的直线,交双曲线于P、Q两点,则|FP|•|FQ|的值为
.
查看答案