甲、乙两个口袋中各装有大小相同的2个白球和3个黑球.
(1)从甲中摸出两个球,求两球恰好颜色不同的概率;
(2)从甲中摸出一个球,放回后再摸出一个球,求两球恰好颜色不同的概率;
(3)从甲中摸出一个球放到乙中后,再从乙中摸出一个球放到甲中,求两袋各色球不变的概率.
考点分析:
相关试题推荐
如图,在正三棱锥A-BCD中,∠BAC=30°,AB=a,平行于AD、BC的截面EFGH分别交AB、BD、DC、CA于点E、F、G、H.
(1)判定四边形EFGH的形状,并说明理由.
(2)设P是棱AD上的点,当AP为何值时,平面PBC⊥平面EFGH,请给出证明.
查看答案
如图,在四棱锥P-ABCD中,底面是正方形,侧面PAD⊥底面ABCD,且PA=PD=
AD,若E、F分别为PC、BD的中点.
(Ⅰ) 求证:EF∥平面PAD;
(Ⅱ) 求证:EF⊥平面PDC.
查看答案
已知函数
,
(1)求函数f(x)的最小正周期和单调减区间.
(2)求函数f(x)在区间
上的最大值和最小值以及相应的x的值.
查看答案
给出公式:sin(α+β)=sinαcosβ+cosαsinβ;cos(α-β)=cosαcosβ+sinαsinβ;
我们可以根据公式将函数
化为:
的形式;
(1)根据你的理解,试将函数
化为f(x)=Asin(ωx+φ)或f(x)=Acos(ωx+φ)的形式.
(2)求出(1)中函数f(x)的最小正周期和单调减区间.
(3)求出(1)中的函数f(x)在区间
上的最大值和最小值以及相应的x的值.
查看答案
已知函数f(x)=f′(0)cosx+sinx,则函数f(x)在
处的切线方程是
.
查看答案