满分5 > 高中数学试题 >

设命题p:(4x-3)2≤1;命题q:x2-(2a+1)x+a(a+1)≤0,若...

设命题p:(4x-3)2≤1;命题q:x2-(2a+1)x+a(a+1)≤0,若¬p是¬q的必要不充分条件,求实数a的取值范围.
分别解出命题p和命题q中不等式的解集得到集合A和集合B,根据¬p是¬q的必要不充分条件,得到q是p的必要不充分条件,即q推不出p,而p能推出q.说明P的解集被q的解集包含,即集合A为集合B的真子集,列出关于a的不等式,求出不等式的解集即可得到a的取值范围. 【解析】 设A={x|(4x-3)2≤1},B={x|x2-(2a+1)x+a(a+1)≤0}, 易知A={x|≤x≤1},B={x|a≤x≤a+1}. 由¬p是¬q的必要不充分条件,从而p是q的充分不必要条件,即A⊂B, 且两等号不能同时取. 故所求实数a的取值范围是[0,].
复制答案
考点分析:
相关试题推荐
判断下列命题是全称命题还是特称命题,并判断其真假.
(1)a>0,且a≠1,则对任意实数x,ax>0;
(2)对任意实数x1,x2,若x1<x2,则tanx1<tanx2
(3)∃T∈R,使|sin(x+T)|=|sinx|;
(4)∃x∈R,使xmanfen5.com 满分网+1<0.
查看答案
已知集合A={x|x2-5x+6=0},B={x|mx+1=0},且A∪B=A,求实数m的值组成的集合.
查看答案
若命题“∃x∈R,使得x2+(a-1)x+1<0”是真命题,则实数a的取值范围是    查看答案
命题p:∀x∈R,f(x)≥m,则命题p的否定非P是    查看答案
已知条件p:|x+1|>2,条件q:5x-6>x2,则¬p是¬q的    条件. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.