满分5 > 高中数学试题 >

关于x的方程(x2-1)2-|x2-1|+k=0,给出下列四个命题: ①存在实数...

关于x的方程(x2-1)2-|x2-1|+k=0,给出下列四个命题:
①存在实数k,使得方程恰有2个不同的实根;
②存在实数k,使得方程恰有4个不同的实根;
③存在实数k,使得方程恰有5个不同的实根;
④存在实数k,使得方程恰有8个不同的实根;
其中假命题的个数是( )
A.0
B.1
C.2
D.3
将方程的问题转化成函数图象的问题,画出可得. 【解析】 关于x的方程(x2-1)2-|x2-1|+k=0可化为(x2-1)2-(x2-1)+k=0(x≥1或x≤-1)(1) 或(x2-1)2+(x2-1)+k=0(-1<x<1)(2) 当k=-2时,方程(1)的解为±,方程(2)无解,原方程恰有2个不同的实根 当k=时,方程(1)有两个不同的实根±,方程(2)有两个不同的实根±,即原方程恰有4个不同的实根 当k=0时,方程(1)的解为-1,+1,±,方程(2)的解为x=0,原方程恰有5个不同的实根 当k=时,方程(1)的解为±,±,方程(2)的解为±,±,即原方程恰有8个不同的实根 故选A
复制答案
考点分析:
相关试题推荐
下列说法正确的是( )
A.由合情推理得出的结论一定是正确的
B.合情推理必须有前提有结论
C.合情推理不能猜想
D.合情推理得出的结论无法判定正误
查看答案
已知函数manfen5.com 满分网(a∈R).
(1)当a=3时,求函数f(x)的单调区间;
(2)若对于任意x∈[1,+∞)都有f'(x)<2(a-1)成立,求实数a的取值范围;
(3)若过点manfen5.com 满分网可作函数y=f(x)图象的三条不同切线,求实数a的取值范围.
查看答案
设椭圆manfen5.com 满分网manfen5.com 满分网的右焦点为F1,直线manfen5.com 满分网与x轴交于点A,若manfen5.com 满分网(其中O为坐标原点).
(1)求椭圆M的方程;
(2)设P是椭圆M上的任意一点,EF为圆N:x2+(y-2)2=1的任意一条直径(E、F为直径的两个端点),求manfen5.com 满分网的最大值.
查看答案
如图所示,已知正方形ABCD的边长为2,AC∩BD=O.将正方形ABCD沿对角BD折起,得到三棱锥A-BCD.
(1)求证:平面AOC⊥平面BCD;
(2)若三棱锥A-BCD的体积为manfen5.com 满分网,求AC的长.
manfen5.com 满分网
查看答案
各项均为正数的数列{an},满足a1=1,manfen5.com 满分网(n∈N*).
(1)求数列{an}的通项公式;
(2)求数列manfen5.com 满分网的前n项和Sn
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.