满分5 > 高中数学试题 >

设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2(n∈N*)....

设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2(n∈N*).
(1)设bn=an+1-2an,证明数列{bn}是等比数列;
(2)求数列{an}的通项公式.
(1)由题设条件知b1=a2-2a1=3.由Sn+1=4an+2和Sn=4an-1+2相减得an+1=4an-4an-1,即an+1-2an=2(an-2an-1),所以bn=2bn-1,由此可知{bn}是以b1=3为首项、以2为公比的等比数列. (2)由题设知.所以数列是首项为,公差为的等差数列.由此能求出数列{an}的通项公式. 【解析】 (1)由a1=1,及Sn+1=4an+2, 得a1+a2=4a1+2,a2=3a1+2=5,所以b1=a2-2a1=3. 由Sn+1=4an+2,① 则当n≥2时,有Sn=4an-1+2,② ①-②得an+1=4an-4an-1,所以an+1-2an=2(an-2an-1), 又bn=an+1-2an,所以bn=2bn-1,所以{bn}是以b1=3为首项、以2为公比的等比数列.(6分) (2)由(I)可得bn=an+1-2an=3•2n-1,等式两边同时除以2n+1,得. 所以数列是首项为,公差为的等差数列. 所以,即an=(3n-1)•2n-2(n∈N*).(13分)
复制答案
考点分析:
相关试题推荐
围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:米).
(1)将修建围墙的总费用y表示成x的函数;
(2)当x为何值时,修建此矩形场地围墙的总费用最小?并求出最小总费用.

manfen5.com 满分网 查看答案
如图,在四棱锥S-ABCD中,底面ABCD是棱形,SA⊥平面ABCD,M,N分别为SA,CD的中点.
(1)证明:直线MN∥平面SBC;
(2)证明:平面SBD⊥平面SAC;
(3)当SA=AD,且∠ABC=60°时,求直线MN与平面ABCD所成角的大小.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,锐角α和钝角β的终边分别与单位圆交于A,B两点.
(1)如果A,B两点的纵坐标分别为manfen5.com 满分网manfen5.com 满分网,求cosα和sinβ的值;
(2)在(1)的条件下,求cos(β-α)的值;
(3)已知点Cmanfen5.com 满分网,求函数manfen5.com 满分网的值域.

manfen5.com 满分网 查看答案
设[x]表示不超过实数x的最大整数,如[0.3]=0,[-0.4]=-1.则在坐标平面内满足方程[x]2+[y]2=25的点(x,y)所构成的图形的面积为    查看答案
若满足x2+y2+2y=0的实数x,y,使不等式x+y+m≥0恒成立,则实数m的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.