满分5 > 高中数学试题 >

已知函数f(x)的定义域是x≠0的一切实数,对定义域内的任意x1,x2都有f=f...

已知函数f(x)的定义域是x≠0的一切实数,对定义域内的任意x1,x2都有f=f(x1)+f(x2),且当x>1时f(x)>0,f(2)=1.
(1)求证:f(x)是偶函数;
(2)f(x)在(0,+∞)上是增函数;
(3)解不等式f(2x2-1)<2.
(1)根据题意和式子的特点,先令x1=x2=-1求出f(-1)=0,再令x1=-1,x2=x求出f(-x)=f(x),则证出此函数为偶函数; (2)先任取x2>x1>0,再代入所给的式子进行作差变形,利用x2=和且>0,判断符号并得出结论; (3)根据题意和(1)的结论,把不等式转化为f(|2x2-1|)<f(4),再由(2)的结论知|2x2-1|<4,故解此不等式即可. 【解析】 (1)由题意知,对定义域内的任意x1,x2都有f(x1•x2)=f(x1)+f(x2), 令x1=x2=-1,代入上式解得f(-1)=0, 令x1=-1,x2=x代入上式,∴f(-x)=f(-1•x)=f(-1)+f(x)=f(x), ∴f(x)是偶函数. (2)设x2>x1>0,则= ∵x2>x1>0,∴,∴>0, 即f(x2)-f(x1)>0,∴f(x2)>f(x1) ∴f(x)在(0,+∞)上是增函数. (3)∵f(2)=1,∴f(4)=f(2)+f(2)=2, ∵f(x)是偶函数,∴不等式f(2x2-1)<2可化为f(|2x2-1|)<f(4), 又∵函数在(0,+∞)上是增函数,∴|2x2-1|<4,且2x2-1≠0, 即-4<2x2-1<4,且2x2≠1解得:,且x≠, 即不等式的解集为{x|,且x≠}.
复制答案
考点分析:
相关试题推荐
某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床位每天的租金)不超过10元时,床位可以全部租出;当床位高于10元时,每提高1元,将有3张床位空闲. 为了获得较好的效益,该宾馆要给床位定一个合适的价格,条件是:①要方便结帐,床价应为1元的整数倍;②该宾馆每日的费用支出为575元,床位出租的收入必须高于支出,而且高得越多越好.若用x表示床价,用y表示该宾馆一天出租床位的净收入(即除去每日的费用支出后的收入):
(1)把y表示成x的函数;
(2)试确定,该宾馆将床价定为多少元时,既符合上面的两个条件,又能使净收入高?
查看答案
已知manfen5.com 满分网,且方程f(x)-x+12=0有两个实根为x1=3,x2=4(这里a、b为常数).
(1)求函数f(x)的解析式;  
(2)求函数f(x)的值域.
查看答案
manfen5.com 满分网=    查看答案
设集合manfen5.com 满分网,若A∩B=A,求实数a的取值范围.
查看答案
已知函数f(x)=2ax2+4(a-3)x+5是在区间(-∞,3)上的减函数,则a的取值范围是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.