(1)根据an+1=f(an)(n∈N*,等式两边同取倒数,变形可得=3,满足等差数列的定义,可得结论;
(2)先根据(1)求出an,然后讨论当x=1,求出Sn(x),当x≠1,0时,可利用错位相消法进行求和,当x=0时,Sn(0)=0也适合,即可求出所求.
【解析】
(1)由已知得:an+1=
∴=3
∴是首项为1,公差d=3的等差数列
(2)由(1)得=1+(n-1)3=3n-2
∴Sn(x)=x+4x2+7x3+…+(3n-5)xn-1+(3n-2)xn
当x=1,Sn(1)=1+4+7+…+(3n-2)=
当x≠1,0时,Sn(x)=x+4x2+7x3+…+(3n-5)xn-1+(3n-2)xn
xSn(x)=x2+4x3+7x4+…+(3n-5)xn+(3n-2)xn+1
(1-x)Sn(x)=x+(3x2+3x3+…+3xn)-(3n-2)xn+1
=
∴=
=
=
当x=0时,Sn(0)=0也适合.
综上所述,
x≠1,Sn(x)=.