满分5 > 高中数学试题 >

过点(1,0)的直线与中心在原点,焦点在x轴上且率心率为的椭圆C相交于A、B两点...

过点(1,0)的直线与中心在原点,焦点在x轴上且率心率为manfen5.com 满分网的椭圆C相交于A、B两点,直线y=manfen5.com 满分网x过线段AB中点,同时椭圆C上存在一眯与右焦点关于直线l对称,试求直线l与椭圆C的方程.
本题是典型的求圆锥曲线方程的问题,将A、B两点坐标代入圆锥曲线方程,两式相减得关于直线AB斜率的等式,再利用对称点所连线段被对称轴垂直平分来列式求解. 【解析】 由e==,得=,从而a2=2b2,c=b 设椭圆方程为x2+2y2=2b2,A(x1,y1),B(x2,y2)在椭圆上 则x12+2y12=2b2,x22+2y22=2b2,两式相减得,(x12-x22)+2(y12-y22)=0,=- 设AB中点为(x,y),则kAB=-,又(x,y)在直线y=x上,y=x,于是-=-1,kAB=-1,则l的方程为y=-x+1. 右焦点(b,0)关于l的对称点设为(x′,y′),则解得 由点(1,1-b)在椭圆上,得1+2(1-b)2=2b2,b2=,a2= ∴所求椭圆C的方程为, l的方程为y=-x+1.
复制答案
考点分析:
相关试题推荐
如图,已知点F(1,0),直线l:x=-1,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且manfen5.com 满分网=manfen5.com 满分网
(1)求动点P的轨迹C的方程;
(2)过点F的直线交轨迹C于A、B两点,交直线l于点M,已知manfen5.com 满分网manfen5.com 满分网,求λ12的值.

manfen5.com 满分网 查看答案
已知椭圆manfen5.com 满分网+manfen5.com 满分网=1=1(a>b>0),点P为其上一点,F1、F2为椭圆的焦点,∠F1PF2的外角平分线为l,点F2关于l的对称点为Q,F2Q交l于点R.
(1)当P点在椭圆上运动时,求R形成的轨迹方程;
(2)设点R形成的曲线为C,直线l:y=k(x+manfen5.com 满分网a)与曲线C相交于A、B两点,当△AOB的面积取得最大值时,求k的值.

manfen5.com 满分网 查看答案
如图,manfen5.com 满分网为半圆,AB为半圆直径,O为半圆圆心,且OD⊥AB,Q为线段OD的中点,已知|AB|=4,曲线C过Q点,动点P在曲线C上运动且保持|PA|+|PB|的值不变.
(1)建立适当的平面直角坐标系,求曲线C的方程;
(2)过D点的直线l与曲线C相交于不同的两点M、N,且M在D、N之间,设manfen5.com 满分网=λ,求λ的取值范围.

manfen5.com 满分网 查看答案
如图,已知圆C1的方程为manfen5.com 满分网,椭圆C2的方程为manfen5.com 满分网(a>b>0),C2的离心率为manfen5.com 满分网,如果C1与C2相交于A、B两点,且线段AB恰为圆C1的直径,求直线AB的方程和椭圆C2的方程.

manfen5.com 满分网 查看答案
manfen5.com 满分网已知中心在原点,顶点A1、A2在x轴上,离心率e=manfen5.com 满分网的双曲线过点P(6,6).
(1)求双曲线方程.
(2)动直线l经过△A1PA2的重心G,与双曲线交于不同的两点M、N,问:是否存在直线l,使G平分线段MN,证明你的结论.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.