满分5 > 高中数学试题 >

已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2,并垂直于x轴的直线...

已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2,并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10.椭圆上不同的两点A(x1,y1)、C(x2,y2)满足条件:|F2A|、|F2B|、|F2C|成等差数列.
(1)求该椭圆的方程;
(2)求弦AC中点的横坐标;
(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.

manfen5.com 满分网
(1)由椭圆定义及条件知2a=|F1B|+|F2B|=10,得a=5.又c=4,所以b==3.由此可知椭圆方程为+=1. (2)由点B(4,yB)在椭圆上,得|F2B|=|yB|=.因为椭圆右准线方程为x=,离心率为.根据椭圆定义,有|F2A|=(-x1),|F2C|=(-x2).由|F2A|、|F2B|、|F2C|成等差数列,得x1+x2=8.由此可知x===4. (3)由A(x1,y1),C(x2,y2)在椭圆上,得9()+25()()=0(x1≠x2).将=x=4,=y,=-(k≠0)代入上式,得9×4+25y(-)=0(k≠0).由此可求出m的取值范围. (1)【解析】 由椭圆定义及条件知 2a=|F1B|+|F2B|=10,得a=5.又c=4, 所以b==3. 故椭圆方程为+=1. (2)【解析】 由点B(4,yB)在椭圆上,得|F2B|=|yB|=. 因为椭圆右准线方程为x=,离心率为. 根据椭圆定义,有|F2A|=(-x1),|F2C|=(-x2). 由|F2A|、|F2B|、|F2C|成等差数列,得(-x1)+(-x2)=2×. 由此得出x1+x2=8. 设弦AC的中点为P(x,y), 则x===4. (3)【解析】 由A(x1,y1),C(x2,y2)在椭圆上,得 9x12+25y12=9×25,④ 9x22+25y22=9×25.⑤ 由④-⑤得9(x12-x22)+25(y12-y22)=0, 即9()+25()()=0(x1≠x2). 将=x=4,=y,=-(k≠0)代入上式,得 9×4+25y(-)=0(k≠0). 由上式得k=y(当k=0时也成立). 由点P(4,y)在弦AC的垂直平分线上,得 y=4k+m, 所以m=y-4k=y-y=-y. 由P(4,y)在线段BB′(B′与B关于x轴对称)的内部,得-<y<. 所以-<m<.
复制答案
考点分析:
相关试题推荐
已知双曲线C:2x2-y2=2与点P(1,2)
(1)求过P(1,2)点的直线l的斜率取值范围,使l与C分别有一个交点,两个交点,没有交点.
(2)若Q(1,1),试判断以Q为中点的弦是否存在.

manfen5.com 满分网 查看答案
过点(1,0)的直线与中心在原点,焦点在x轴上且率心率为manfen5.com 满分网的椭圆C相交于A、B两点,直线y=manfen5.com 满分网x过线段AB中点,同时椭圆C上存在一眯与右焦点关于直线l对称,试求直线l与椭圆C的方程.
查看答案
如图,已知点F(1,0),直线l:x=-1,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且manfen5.com 满分网=manfen5.com 满分网
(1)求动点P的轨迹C的方程;
(2)过点F的直线交轨迹C于A、B两点,交直线l于点M,已知manfen5.com 满分网manfen5.com 满分网,求λ12的值.

manfen5.com 满分网 查看答案
已知椭圆manfen5.com 满分网+manfen5.com 满分网=1=1(a>b>0),点P为其上一点,F1、F2为椭圆的焦点,∠F1PF2的外角平分线为l,点F2关于l的对称点为Q,F2Q交l于点R.
(1)当P点在椭圆上运动时,求R形成的轨迹方程;
(2)设点R形成的曲线为C,直线l:y=k(x+manfen5.com 满分网a)与曲线C相交于A、B两点,当△AOB的面积取得最大值时,求k的值.

manfen5.com 满分网 查看答案
如图,manfen5.com 满分网为半圆,AB为半圆直径,O为半圆圆心,且OD⊥AB,Q为线段OD的中点,已知|AB|=4,曲线C过Q点,动点P在曲线C上运动且保持|PA|+|PB|的值不变.
(1)建立适当的平面直角坐标系,求曲线C的方程;
(2)过D点的直线l与曲线C相交于不同的两点M、N,且M在D、N之间,设manfen5.com 满分网=λ,求λ的取值范围.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.