满分5 > 高中数学试题 >

若lga+lgb=0(其中a≠1,b≠1),则函数f(x)=ax与g(x)=bx...

若lga+lgb=0(其中a≠1,b≠1),则函数f(x)=ax与g(x)=bx的图象( )
A.关于直线y=x对称
B.关于x轴对称
C.关于y轴对称
D.关于原点对称
由lga+lgb=0由对数的运算性质我们易得到a与b的关系,进而根据函数对称变换的原则,可判断出函数f(x)=ax与g(x)=bx的图象的对称关系. 【解析】 ∵lga+lgb=lgab=0 ∴ab=1, ∴. 故函数f(x)=ax与g(x)=bx的图象关于y轴对称 故选C
复制答案
考点分析:
相关试题推荐
函数manfen5.com 满分网的零点个数为( )
A.0
B.1
C.2
D.3
查看答案
已知命题p:∀x∈R,sinx≤1,则( )
A.¬p:∃x∈R,sinx≥1
B.¬p:∀x∈R,sinx≥1
C.¬p:∃x∈R,sinx>1
D.¬p:∀x∈R,sinx>1
查看答案
如图所示,已知P(4,0)是圆x2+y2=36内的一点,A、B是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程.

manfen5.com 满分网 查看答案
已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2,并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10.椭圆上不同的两点A(x1,y1)、C(x2,y2)满足条件:|F2A|、|F2B|、|F2C|成等差数列.
(1)求该椭圆的方程;
(2)求弦AC中点的横坐标;
(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.

manfen5.com 满分网 查看答案
已知双曲线C:2x2-y2=2与点P(1,2)
(1)求过P(1,2)点的直线l的斜率取值范围,使l与C分别有一个交点,两个交点,没有交点.
(2)若Q(1,1),试判断以Q为中点的弦是否存在.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.