满分5 > 高中数学试题 >

已知函数. (1)确定y=f(x)在(0,+∞)上的单调性; (2)设h(x...

已知函数manfen5.com 满分网.
(1)确定y=f(x)在(0,+∞)上的单调性;
(2)设h(x)=x•f(x)-x-ax3在(0,2)上有极值,求a的取值范围.
(1)由题意,先对函数f(x)求导,有式子特点分析得出结论; (2)由题意,利用式子的特点及函数极值的定义分析函数在定义域内倒数的正负符号进而求解. 【解析】 (1)由已知函数求导得 设,则 ∴g(x)在(0,+∞)上递减,g(x)<g(0)=0,∴f′(x)<0, 因此f(x)在(0,+∞)上单调递减. (2)由h(x)=xf(x)-x-ax3可得,h(x)=ln(1+x)-x-ax3  若a≥0,任给x∈(0,+∞),,-3ax2<0,∴h′(x)<0, ∴h(x)在(0,2)上单调递减,则f(x)在(0,2)无极值; 若a<0,h(x)=x•f(x)-x-ax3在(0,2)上有极值的充要条件是 φ(x)=3ax2+3ax+1在(0,2)上有零点, ∴φ(0)•φ(2)<0,解得综上所述,a的取值范围是(-∞,).
复制答案
考点分析:
相关试题推荐
已知定义在R上的函数f(x)满足f(a+b)=f(a)+f(b),且x>0时,f(x)<0,f(1)=-2.
(1)求证f(x)是奇函数;
(2)求f(x)在[-3,3]上的最大值和最小值.
查看答案
已知关于x的方程9x+m•3x+6=0(其中m∈R).
(1)若m=-5,求方程的解;
(2)若方程没有实数根,求实数m的取值范围.
查看答案
manfen5.com 满分网manfen5.com 满分网如图所示:图1是定义在R上的二次函数f(x)的部分图象,图2是函数g(x)=loga(x+b)的部分图象.
(1)分别求出函数f(x)和g(x)的解析式;
(2)如果函数y=g(f(x))在区间[1,m)上单调递减,求m的取值范围.
查看答案
设函数f(x)=manfen5.com 满分网,若f(x)为奇函数,则当0<x≤2时,g(x)的最大值是    查看答案
已知manfen5.com 满分网,则manfen5.com 满分网的展开式中的常数项为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.