(I)由菱形的对角线互相垂直及直四棱柱的几何特征,结合线面垂直的判定定理易证BD⊥平面ACC1A,设AC∩BD=O,AE的中点为M,连OM,可证得FM∥BD,结合线面垂直的第二判定定理及面面垂直的判定定理可得平面AEF⊥平面ACC1A1;
(Ⅱ)由二面角的平面角的定义,可得∠EAC为所求二面角的平面角θ.解等腰直角三角形ACE,即得到平面AEF与平面ABCD所成角.
证明:(Ⅰ) BD⊥平面ACC1A ①
设AC∩BD=O,AE的中点为M,连OM,则OM=EC=FB
∴FB∥CE∥OM
∴BOMF为平行四边形
∴FM∥BO即FM∥BD
由①,知面AEF⊥面ACC1A1
(Ⅱ)∵AC⊥BD,平面AEF∩平面ABCD=l,l过A且l∥BD
∴AC⊥l,又BD⊥平面ACC1A1
∴l⊥平面ACC1A1,
∴l⊥AE
∴∠EAC为所求二面角的平面角θ.
∵∠ABC=60°,
∴AC=BC=CE
由CC1⊥AC
故△ECA为Rt△,即△ECA为等腰直角三角形
故∠EAC=θ=45°