满分5 > 高中数学试题 >

已知f(x)=xlnx,g(x)=x3+ax2-x+2. (Ⅰ)如果函数g(x)...

已知f(x)=xlnx,g(x)=x3+ax2-x+2.
(Ⅰ)如果函数g(x)的单调递减区间为manfen5.com 满分网,求函数g(x)的解析式;
(Ⅱ)在(Ⅰ)的条件下,求函数y=g(x)的图象在点P(-1,1)处的切线方程;
(Ⅲ)若不等式2f(x)≤g′(x)+2恒成立,求实数a的取值范围.
(I)求出g(x)的导函数,令导函数小于0得到不等式的解集,得到相应方程的两个根,将根代入,求出a的值. (II)求出g(x)的导数在x=-1的值即曲线的切线斜率,利用点斜式求出切线的方程. (III)求出不等式,分离出参数A,构造函数h(x),利用导数求出h(x)的最大值,令a大于等于最大值,求出a的范围. 【解析】 (I)g′(x)=3x2+2ax-1由题意3x2+2ax-1<0的解集是 即3x2+2ax-1=0的两根分别是. 将x=1或代入方程3x2+2ax-1=0得a=-1. ∴g(x)=x3-x2-x+2.(4分) (II)由(Ⅰ)知:g′(x)=3x2-2x-1,∴g′(-1)=4, ∴点p(-1,1)处的切线斜率k=g′(-1)=4, ∴函数y=g(x)的图象在点p(-1,1)处的切线方程为: y-1=4(x+1),即4x-y+5=0.(8分) (III)∵2f(x)≤g′(x)+2 即:2xlnx≤3x2+2ax+1对x∈(0,+∞)上恒成立 可得对x∈(0,+∞)上恒成立 设,则 令h′(x)=0,得(舍) 当0<x<1时,h′(x)>0;当x>1时,h′(x)<0 ∴当x=1时,h(x)取得最大值-2 ∴a≥-2. ∴a的取值范围是[-2,+∞).(13分)
复制答案
考点分析:
相关试题推荐
已知矩形ABCD中,manfen5.com 满分网,BC=1.以AB的中点O为原点建立如图所示的平面直角坐标系xoy.
(1)求以A,B为焦点,且过C,D两点的椭圆的标准方程;
(2)过点P(0,2)的直线l与(1)中的椭圆交于M,N两点,是否存在直线l,使得以线段MN为直径的圆恰好过原点?若存在,求出直线l的方程;若不存在,说明理由.

manfen5.com 满分网 查看答案
如图所示,在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=manfen5.com 满分网AP=2,D是AP的中点,E,F,G分别为PC,PD,CB的中点,将△PCD沿CD折起,使得PD⊥平面ABCD.
(1)求证:AP∥平面EFG;
(2)求二面角G-EF-D的大小.
manfen5.com 满分网
查看答案
数列{bn}(n∈N*)是递增的等比数列,且b1+b3=5,b1b3=4.
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)若an=log2bn+3,求证数列{an}是等差数列;
(Ⅲ)若a1+a2+a3+…+am≤a40,求m的最大值.
查看答案
已知:A、B、C是△ABC的内角,a,b,c分别是其对边长,向量manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
(1)求角A的大小;
(2)若manfen5.com 满分网,求b的长.
查看答案
将一枚骰子先后抛掷2次,观察向上面的点数
(Ⅰ)点数之和是5的概率;
(Ⅱ)设a,b分别是将一枚骰子先后抛掷2次向上面的点数,求式子2a-b=1成立的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.