满分5 > 高中数学试题 >

已知函数f(x)=ax+lnx(a∈R) (1)求f(x)的单调区间; (2)设...

已知函数f(x)=ax+lnx(a∈R)
(1)求f(x)的单调区间;
(2)设g(x)=x2-2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求实数a的取值范围.
(1)先求f(x)的导数,再对参数a进行讨论,利用导数函数值的正负,从而可求f(x)的单调区间; (2)对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),等价于f(x)max<g(x)max,分别求出相应的最大值,即可求得实数a的取值范围. 【解析】 (1)…(2分) 当a≥0时,由于x∈(0,+∞),f′(x)>0,所以函数f(x)的单调增区间为(0,+∞),…(4分) 当a<0时,令f'(x)=0,得. 当x变化时,f'(x)与f(x)变化情况如下表: 所以函数f(x)的单调增区间为(0,),函数f(x)的单调减区间为…(6分) (2)由已知,转化为f(x)max<g(x)max…(8分) 因为g(x)=x2-2x+2=(x-1)2+1,x∈[0,1], 所以g(x)max=2…(9分) 由(Ⅱ)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意. (或者举出反例:存在f(e3)=ae3+3>2,故不符合题意.)     …(10分) 当a<0时,f(x)在上单调递增,在上单调递减, 故f(x)的极大值即为最大值,,…(11分) 所以2>-1-ln(-a),解得.…(12分)
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网两焦点分别为F1、F2,P是椭圆在第一象限弧上一点,并满足manfen5.com 满分网=1,过P作倾斜角互补的两条直线PA、PB分别交椭圆于A、B两点.
(1)求P点坐标;
(2)求直线AB的斜率;
(3)求△PAB面积的最大值.

manfen5.com 满分网 查看答案
从某学校高三年级800名学生中随机抽取50名测量身高,据测量被抽取的学生的身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160).第二组[160,165);…第八组[190,195],图是按上述分组方法得到的条形图.

manfen5.com 满分网
(1)根据已知条件填写下面表格:
组 别12345678
样本数
(2)估计这所学校高三年级800名学生中身高在180cm以上(含180cm)的人数;
(3)在样本中,若第二组有1人为男生,其余为女生,第七组有1人为女生,其余为男生,在第二组和第七组中各选一名同学组成实验小组,问:实验小组中恰为一男一女的概率是多少?
查看答案
如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=4,AD=2,AB=2manfen5.com 满分网,BC=6.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)求二面角A-PC-D的大小.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,在△ABC中,manfen5.com 满分网
(1)求sinA;
(2)记BC的中点为D,求中线AD的长.
查看答案
数列{an}中,a1=2,an+1=an+cn(c是不为0的常数,n∈N*),且a1,a2,a3成等比数列.
(1)求数列{an}的通项公式;
(2)若bn=manfen5.com 满分网,求数列{bn}的前n项和Tn
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.