(1)由已知中函数(m>0且m≠1),令t=x2-1,利用换元法,易求出f(x)的表达式,进而根据使函数解析式有意义的原则,构造关于x的不等式,解不等式即可求出函数的定义域,判断f(-x)与f(x)的关系,然后根据函数奇偶性的定义,即可判断出函数的奇偶性;
(2)由(1)得出函数f(x)的解析式,再将所要求解的对数方程去掉对数符号,转化成关于x的分式方程求解即得.
【解析】
(1)令t=x2-1(t≥-1)
则x2=t+1
∵
∴=
∴
要使函数的解析式有意义,自变量x须满足:-1<x<1
故函数f(x)的定义域为(-1,1)
又∵=-f(x)
故函数为奇函数
(2)由(1)得:
,
故原方程化为:,
得:,
解得:x=-1+,或x=-1-(负值舍去)
故方程的解是.