满分5 > 高中数学试题 >

已知函数f(x)=,其中,=(cosωx-sinωx,2sinωx),其中ω>0...

已知函数f(x)=manfen5.com 满分网,其中manfen5.com 满分网manfen5.com 满分网=(cosωx-sinωx,2sinωx),其中ω>0,若f(x)相邻两对称轴间的距离不小于manfen5.com 满分网
(Ⅰ)求ω的取值范围;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,a=manfen5.com 满分网,b+c=3,当ω最大时,f(A)=1,求△ABC的面积.
(I)利用向量的数量积的坐标表示及二倍角公式对函数整理可得,,根据周期公式可得,根据正弦函数的性质相邻两对称轴间的距离即为,从而有代入可求ω的取值范围. (Ⅱ)由(Ⅰ)可知ω的最大值为1,由f(A)=1可得,结合已知可得,由余弦定理知可得b2+c2-bc=3,又b+c=3联立方程可求b,c,代入面积公式可求 也可用配方法∵求得bc=2,直接代入面积公式可求 【解析】 (Ⅰ)f(x)= cosωx•sinωx=cos2ωx+sin2ωx= ∵ω>0 ∴函数f(x)的周期T=,由题意可知, 解得0<ω≤1,即ω的取值范围是ω|0<ω≤1 (Ⅱ)由(Ⅰ)可知ω的最大值为1, ∴ ∵f(A)=1 ∴ 而π ∴2A+π ∴A= 由余弦定理知cosA= ∴b2+c2-bc=3,又b+c=3 联立解得 ∴S△ABC= (或用配方法∵ ∴bc=2 ∴.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=2cos2x+manfen5.com 满分网sinxcosx.
(1)求函数f(x)定义在manfen5.com 满分网上的值域.
(2)在△ABC中,若f(C)=2,2sinB=cos(A-C)-cos(A+C),求tanA的值.
查看答案
已知向量manfen5.com 满分网manfen5.com 满分网,且x∈[0,π],令函数manfen5.com 满分网
①当a=1时,求f(x)的递增区间
②当a<0时,f(x)的值域是[3,4],求a,b的值.
查看答案
已知函数manfen5.com 满分网时取到最大值.
(1)求函数f(x)的定义域;(2)求实数a的值.
查看答案
manfen5.com 满分网的值为     查看答案
给出下列命题:①若{an}成等比数列,Sn是前n项和,则S4,S8-S4,S12-S8成等比数列;②已知函数y=2sin(ωx+θ)为偶函数(0<θ<π),其图象与直线y=2的交点的横坐标为x1、x2,若|x1-x2|的最小值为π,则ω的值为2,θ的值为manfen5.com 满分网;③正弦函数在第一象限为单调递增函数;④函数y=2sin(2x-manfen5.com 满分网)的图象的一个对称点是(manfen5.com 满分网,0);其中正确命题的序号是    .(把你认为正确命题的序号都填上) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.