满分5 > 高中数学试题 >

已知f(x)=xlnx,g(x)=x3+ax2-x+2 (I)求函数f(x)的单...

已知f(x)=xlnx,g(x)=x3+ax2-x+2
(I)求函数f(x)的单调区间;
(Ⅱ)求函数f(x)在[t,t+2](t>0)上的最小值;
(Ⅲ)对一切的x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求实数a的取值范围.
(I)求出f′(x),令f′(x)小于0求出x的范围即为函数的减区间,令f′(x)大于0求出x的范围即为函数的增区间;(Ⅱ)当时t无解,当即时,根据函数的增减性得到f(x)的最小值为f(),当即时,函数为增函数,得到f(x)的最小值为f(t); (Ⅲ)求出g′(x),把f(x)和g′(x)代入2f(x)≤g′(x)+2中,根据x大于0解出,然后令h(x)=,求出h(x)的最大值,a大于等于h(x)的最大值,方法是先求出h′(x)=0时x的值,利用函数的定义域和x的值分区间讨论导函数的正负得到函数的单调区间,根据函数的增减性即可得到函数的最大值,即可求出a的取值范围. 【解析】 (Ⅰ)f′(x)=lnx+1令f′(x)<0解得 ∴f(x)的单调递减区间为 令f′(x)>0解得 ∴f(x)的单调递增区间为; (Ⅱ)当时,t无解 当,即时, ∴; 当,即时,f(x)在[t,t+2]上单调递增, ∴f(x)min=f(t)=tlnt ∴; (Ⅲ)由题意:2xlnx≤3x2+2ax-1+2即2xlnx≤3x2+2ax+1 ∵x∈(0,+∞) ∴ 设,则 令h′(x)=0,得(舍) 当0<x<1时,h′(x)>0;当x>1时,h′(x)<0 ∴当x=1时,h(x)取得最大值,h(x)max=-2 ∴a≥-2 故实数a的取值范围[-2,+∞)
复制答案
考点分析:
相关试题推荐
已知矩形ABCD中,manfen5.com 满分网,BC=1.以AB的中点O为原点建立如图所示的平面直角坐标系xoy.
(1)求以A,B为焦点,且过C,D两点的椭圆的标准方程;
(2)过点P(0,2)的直线l与(1)中的椭圆交于M,N两点,是否存在直线l,使得以线段MN为直径的圆恰好过原点?若存在,求出直线l的方程;若不存在,说明理由.

manfen5.com 满分网 查看答案
如图所示,在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=manfen5.com 满分网AP=2,D是AP的中点,E,F,G分别为PC,PD,CB的中点,将△PCD沿CD折起,使得PD⊥平面ABCD.
(1)求证:AP∥平面EFG;
(2)求二面角G-EF-D的大小.
manfen5.com 满分网
查看答案
某商场准备在国庆节期间举行促销活动,根据市场调查,该商场决定从2种服装商品,2种家电商品,3种日用商品中,选出3种商品进行促销活动.
(1)试求选出的3种商品中至少有一种是日用商品的概率;
(2)商场对选出的某商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高150元,同时,若顾客购买该商品,则允许有3次抽奖的机会,若中奖,则每次中奖都获得数额为m的奖金.假设顾客每次抽奖时获奖与否的概率都是manfen5.com 满分网,请问:商场应将每次中奖奖金数额m最高定为多少元,才能使促销方案对商场有利?
查看答案
数列{bn}(n∈N*)是递增的等比数列,且b1+b3=5,b1b3=4.
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)若an=log2bn+3,求证数列{an}是等差数列;
(Ⅲ)若a1+a2+a3+…+am≤a40,求m的最大值.
查看答案
已知:A、B、C是△ABC的内角,a,b,c分别是其对边长,向量manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
(1)求角A的大小;
(2)若manfen5.com 满分网,求b的长.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.