满分5 > 高中数学试题 >

设函数f(x)=kax-a-x(a>0且a≠1)是奇函数, (1)求k的值; (...

设函数f(x)=kax-a-x(a>0且a≠1)是奇函数,
(1)求k的值;
(2)若f(1)>0,试求不等式f(x2+2x)+f(x-4)>0的解集;
(3)若manfen5.com 满分网,且g(x)=a2x+a-2x-2mf(x)在[1,+∞)上的最小值为-2,求m的值.
(1)根据奇函数的性质知道f(0)=0,即可得答案. (2)由(1)可得f(x)的解析式,再根据f(x)的单调性求出不等式的解集. (3)由课求出a的值,进而求出函数g(x)的解析式.再根据g(x)在[1,+∞)上的最小值为-2,求出m的值 【解析】 (1)∵f(x)为奇函数, ∴f(0)=0,∴k-1=0, ∴k=1 (2)∵f(1)>0,∴,∴a>1, 又f'(x)=axlna+a-xlna=(ax+a-x)lna>0 ∴f(x)在R上单调递增, 原不等式可化为:f(x2+2x)>f(4-x), ∴x2+2x>4-x,即x2+3x-4>0, ∴x>1或x<-4, ∴不等式的解集为{x|x>1或x<-4} (3)∵,∴,即2a2-3a-2=0, ∴a=2或(舍去) ∴g(x)=22x+2-2x-2m(2x-2-x)=(2x-2-x)2-2m(2x-2-x)+2 令t=f(x)=2x-2-x, ∵x≥1,∴, ∴g(x)=t2-2mt+2=(t-m)2+2-m2, 当时,当t=m时,g(x)min=2-m2=-2, ∴m=2, 当时,当时,,,舍去, ∴m=2.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网选修4-1:几何证明选讲
如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,直线OB交⊙O于点E,D,连接EC,CD.
(I)试判断直线AB与⊙O的位置关系,并加以证明;
(Ⅱ)若tanE=manfen5.com 满分网,⊙O的半径为3,求OA的长.
查看答案
已知正项数列{an}中,a1=1,点manfen5.com 满分网在函数y=x2+1的图象上.
(1)求数列{an}的通项公式;
(2)已知manfen5.com 满分网,令manfen5.com 满分网,求{Cn}的前n项和Tn
查看答案
如图,在三棱锥P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC.
(1)求证:PC⊥AB.
(2)求二面角B-AP-C的正弦值.

manfen5.com 满分网 查看答案
某网站就观众对2010年春晚小品类节目的喜爱程度进行网上调查,其中持各种态度的人数如下表:
喜爱程度喜欢一般不喜欢
人数560240200
(1)现用分层抽样的方法从所有参与网上调查的观众中抽取了一个容量为n的样本,已知从不喜欢小品的观众中抽取的人数为5人,则n的值为多少?
(2)在(1)的条件下,若抽取到的5名不喜欢小品的观众中有2名为女性,现将抽取到的5名不喜欢小品的观众看成一个总体,从中任选两名观众,求至少有一名为女性观众的概率.
查看答案
已知f(x)=2x2+bx+c,不等式f(x)<0的解集是(0,5).
(1)求f(x)的解析式;
(2)对于任意x∈[-1,1],不等式f(x)+t≤2恒成立,求t的范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.