满分5 > 高中数学试题 >

如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=...

manfen5.com 满分网如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2manfen5.com 满分网,∠PAB=60°.
(Ⅰ)证明AD⊥平面PAB;
(Ⅱ)求异面直线PC与AD所成的角的大小;
(Ⅲ)求二面角P-BD-A的大小.
(I)由题意在△PAD中,利用所给的线段长度计算出AD⊥PA,在利用矩形ABCD及线面垂直的判定定理及、此问得证; (II)利用条件借助图形,利用异面直线所称角的定义找到共面得两相交线,并在三角形中解出即可; (III)由题中的条件及三垂线定理找到二面角的平面角,然后再在三角形中解出角的大小即可. 【解析】 (Ⅰ)证明:在△PAD中,由题设PA=2,PD=2, 可得PA2+AD2=PD2于是AD⊥PA. 在矩形ABCD中,AD⊥AB.又PA∩AB=A, 所以AD⊥平面PAB. (Ⅱ)【解析】 由题设,BC∥AD, 所以∠PCB(或其补角)是异面直线PC与AD所成的角. 在△PAB中,由余弦定理得 PB= 由(Ⅰ)知AD⊥平面PAB,PB⊂平面PAB, 所以AD⊥PB,因而BC⊥PB,于是△PBC是直角三角形,故tanPCB=. 所以异面直线PC与AD所成的角的大小为arctan. (Ⅲ)【解析】 过点P做PH⊥AB于H,过点H做HE⊥BD于E,连接PE 因为AD⊥平面PAB,PH⊂平面PAB,所以AD⊥PH.又AD∩AB=A, 因而PH⊥平面ABCD,故HE为PE再平面ABCD内的射影. 由三垂线定理可知,BD⊥PE,从而∠PEH是二面角P-BD-A的平面角. 由题设可得, PH=PA•sin60°=,AH=PA•cos60°=1, BH=AB-AH=2,BD=, HE= 于是再RT△PHE中,tanPEH= 所以二面角P-BD-A的大小为arctan.
复制答案
考点分析:
相关试题推荐
如图,在四棱锥P-ABCD中,则面PAD⊥底面ABCD,侧棱PA=PD=manfen5.com 满分网,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.
(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)求异面直线PB与CD所成角的大小;
(Ⅲ)线段AD上是否存在点Q,使得它到平面PCD的距离为manfen5.com 满分网?若存在,求出manfen5.com 满分网的值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,正三棱锥O-ABC的三条侧棱OA、OB、OC两两垂直,且长度均为2.E、F分别是AB、AC的中点,H是EF的中点,过EF作平面与侧棱OA、OB、OC或其延长线分别相交于A1、B1、C1,已知manfen5.com 满分网
(1)求证:B1C1⊥平面OAH;
(2)求二面角O-A1B1-C1的大小.

manfen5.com 满分网 查看答案
如图,在四棱锥O-ABCD中,底面ABCD四边长为1的菱形,∠ABC=manfen5.com 满分网,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点.
(Ⅰ)证明:直线MN∥平面OCD;
(Ⅱ)求异面直线AB与MD所成角的大小;
(Ⅲ)求点B到平面OCD的距离.

manfen5.com 满分网 查看答案
manfen5.com 满分网正△ABC的边长为2,AD是BC边上的高,沿AD把△ABC折起,使∠BDC=90°,则折起后的∠BAC的余弦值是    查看答案
A是△BCD所在平面外一点,M、N分别是△ABC和△ACD的重心,若BD=4,试求MN的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.