满分5 > 高中数学试题 >

设{an}是由正数组成的等比数列,Sn是其前n项和. (1)证明; (2)是否存...

设{an}是由正数组成的等比数列,Sn是其前n项和.
(1)证明manfen5.com 满分网
(2)是否存在常数c>0,使得manfen5.com 满分网成立?并证明你的结论.
(1)设{an}的公比为q,当q=1时根据Sn•Sn+2-Sn+12求得结果小于0,不符合;当q≠1时利用等比数列求和公式求得Sn•Sn+2-Sn+12<0,进而推断Sn•Sn+2,<Sn+12.根据对数函数的单调性求得lg(Sn•Sn+2)<lgSn+12,原式得证. (2)要使.成立,则有进而分两种情况讨论当q=1时根据(Sn-c)(Sn+2-c)=(Sn+1-c)2求得-a12<0不符合题意;当q≠1时求得(Sn-c)(Sn+2-c)-(Sn+1-c)2=-a1qn[a1-c(1-q)],进而推知a1-c(1-q)=0,判断出0<q<1,但此时不符合题意,最后综合可得结论. (1)证明:设{an}的公比为q,由题设a1>0,q>0. (i)当q=1时,Sn=na1,从而 Sn•Sn+2-Sn+12 =na1•(n+2)a1-(n+1)2a12 =-a12<0 (ⅱ)当q≠1时,,从而 Sn•Sn+2-Sn+12= =-a12qn<0. 由(i)和(ii)得Sn•Sn+2,<Sn+12.根据对数函数的单调性,知 lg(Sn•Sn+2)<lgSn+12, 即. (2)【解析】 不存在. 要使.成立,则有 分两种情况讨论: (i)当q=1时, (Sn-c)(Sn+2-c)=(Sn+1-c)2 =(na1-c)[(n+2)a1-c]-[(n+1)a1-c]2 =-a12<0. 可知,不满足条件①,即不存在常数c>0,使结论成立. (ii)当q≠1时,若条件①成立,因为 (Sn-c)(Sn+2-c)-(Sn+1-c)2 = =-a1qn[a1-c(1-q)], 且a1qn≠0,故只能有a1-c(1-q)=0,即 此时,因为c>0,a1>0,所以0<q<1. 但0<q<1时,,不满足条件②,即不存在常数c>0,使结论成立. 综合(i)、(ii),同时满足条件①、②的常数c>0不存在,即不存在常数c>0,使.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=tgx,x∈(0,manfen5.com 满分网).若x1,x2∈(0,manfen5.com 满分网),且x1≠x2
证明manfen5.com 满分网[f(x1)+f(x2)]>f(manfen5.com 满分网
查看答案
已知函数manfen5.com 满分网
(1)判断函数y=logax的增减性;
(2)若命题manfen5.com 满分网为真命题,求实数x的取值范围.
查看答案
已知不等式2(lomanfen5.com 满分网2+7lomanfen5.com 满分网+3≤0的解集为M,求当x∈M时,函数f(x)=(lomanfen5.com 满分网)(lomanfen5.com 满分网)的最大值和最小值.
查看答案
证明不等式manfen5.com 满分网(n∈N*
查看答案
已知a>0,b>0,且a+b=1,求证:(a+manfen5.com 满分网)(b+manfen5.com 满分网)≥manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.