满分5 > 高中数学试题 >

对于函数y=f(x)(x∈R),给出下列命题: (1)在同一直角坐标系中,函数y...

对于函数y=f(x)(x∈R),给出下列命题:
(1)在同一直角坐标系中,函数y=f(1-x)与y=f(x-1)的图象关于直线x=0对称;
(2)若f(1-x)=f(x-1),则函数y=f(x)的图象关于直线x=1对称;
(3)若f(1+x)=f(x-1),则函数y=f(x)是周期函数;
(4)若f(1-x)=-f(x-1),则函数y=f(x)的图象关于点(0,0)对称.
其中所有正确命题的序号是   
(1)函数y=f(x-1)与y=f(1-x)的图象可以由f(x)与y=f(-x)的图象向右移了一个单位而得到,从而函数y=f(x-1)与y=f(1-x)的图象关于直线x=1对称; (2)若f(1-x)=f(x-1),令t=1-x,有f(t)=f(-t),则函数y=f(x)的图象关于直线x=0对称; (3)若f(1+x)=f(x-1),则f(x+2)=f[(x+1)+1]=f(x),函数y=f(x)是以2为周期的周期函数; (4)若f(1-x)=-f(x-1),则可得f(-t)=-f(t),即函数f(x)为奇函数,从而可得函数y=f(x)的图象关于点(0,0)对称. 【解析】 (1):∵f(x)与y=f(-x)的图象关于直线x=0对称,函数y=f(x-1)与y=f(1-x)的图象可以由f(x)与y=f(-x)的图象向右移了一个单位而得到,从而可得函数y=f(x-1)与y=f(1-x)的图象关于直线x=1对称;故(1)错误 (2)若f(1-x)=f(x-1),令t=1-x,有f(t)=f(-t),则函数y=f(x)的图象关于直线x=0对称;故(2)错误 (3)若f(1+x)=f(x-1),则f(x+2)=f[(x+1)+1]=f(x),函数y=f(x)是以2为周期的周期函数;故(3)正确 (4)若f(1-x)=-f(x-1),则可得f(-t)=-f(t),即函数f(x)为奇函数,从而可得函数y=f(x)的图象关于点(0,0)对称.故(4)正确 故答案为(3)(4)
复制答案
考点分析:
相关试题推荐
设m∈R,已知函数f(x)=-x2-2mx2+(1-2m)x+3m-2,若曲线y=f(x)在x=0处的切线恒过定点P,则点P的坐标为    查看答案
已知等比数列{an}的各均为正数,且manfen5.com 满分网,则数列{an}的通项公式为    查看答案
在平面直角坐标系xOy中,已知椭圆manfen5.com 满分网的右顶点为A,上顶点为B,M为线段AB的中点,若∠MOA=30°,则该椭圆的离心率的值为    查看答案
函数manfen5.com 满分网的最小正周期是    查看答案
用3种不同的颜色给图中的3个矩形随机涂色,每个矩形只涂一种颜色,则3个矩形中有且仅有两个矩形颜色相同的概率是   
manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.