根据异面直线a与b所成的角为50°,P为空间一点,过P分别作直线a,b的平行线,得到∠APB=50°,过P点作直线c,d分别是角∠APB的平分线和面APB的垂线,这时c与a,b所成角为25°,d与a,b所成角为90°,然后直线从c转到直线d的过程中一定经过30°的角,可求出直线的条数.
【解析】
把异面直线a,b平移到相交,使交点为P,
此时∠APB=50°,
过P点作直线c平分∠APB,这时c与a,b所成角为25°,
过P点作直线d垂直a和b,这时d与a,b所成角为90°,
直线从c向两边转到d时与a,b所成角单调递增,必有经过30°,
因为两边,所以有2条.
故选B.