满分5 > 高中数学试题 >

已知椭圆的左、右焦点分别为F1、F2,短轴两个端点为A、B,且四边形F1AF2B...

已知椭圆manfen5.com 满分网的左、右焦点分别为F1、F2,短轴两个端点为A、B,且四边形F1AF2B是边长为2的正方形.
(1)求椭圆的方程;
(2)若C、D分别是椭圆长的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P.证明:manfen5.com 满分网为定值.
(3)在(2)的条件下,试问x轴上是否存异于点C的定点Q,使得以MP为直径的圆恒过直线DP、MQ的交点,若存在,求出点Q的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)由题意知a=2,b=c,b2=2,由此可知椭圆方程为. (2)设M(2,y),P(x1,y1),,直线CM:,代入椭圆方程x2+2y2=4,得,然后利用根与系数的关系能够推导出为定值. (3)设存在Q(m,0)满足条件,则MQ⊥DP.,再由,由此可知存在Q(0,0)满足条件. 【解析】 (1)a=2,b=c,a2=b2+c2,∴b2=2; ∴椭圆方程为(4分) (2)C(-2,0),D(2,0),设M(2,y),P(x1,y1), 直线CM:,代入椭圆方程x2+2y2=4, 得(6分) ∵,∴(8分) ∴(定值)(10分) (3)设存在Q(m,0)满足条件,则MQ⊥DP(11分) (12分) 则由,从而得m=0 ∴存在Q(0,0)满足条件(14分)
复制答案
考点分析:
相关试题推荐
已知数列{an}的前n项和为Sn,且满足Sn=2an-n,(n∈N*
(Ⅰ)求a1,a2,a3的值;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)若bn=(2n+1)an+2n+1,数列{bn}的前n项和为Tn,求满足不等式manfen5.com 满分网≥128的最小n值.
查看答案
已知函数f(x)=2x3-3ax2+1.
(1)若x=1为函数f(x)的一个极值点,试确定实数a的值,并求此时函数f(x)的极值;
(2)求函数f(x)的单调区间.
查看答案
已知直三棱柱ABC-A1B1C1中,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,D、E、F分别为B1A、C1C、BC的中点.
(1)求异面直线B1F与AC的夹角余弦值;
(2)求证:DE∥平面ABC;
(3)求证:B1F⊥平面AEF.

manfen5.com 满分网 查看答案
某中学共有学生2000人,各年级男,女生人数如下表:
一年级二年级三年级
女生373xy
男生377370z
已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19.
(1)现用分层抽样的方法在全校抽取48名学生,问应在高三年级抽取多少名?
(2)已知y≥245,z≥245,求高三年级中女生比男生多的概率.
查看答案
在△ABC中,a、b、c分别为角A、B、C的对边,且(a2+b2)sin(A-B)=(a2-b2)sinC,试判断△ABC的形状.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.