满分5 > 高中数学试题 >

设数列满足a1=2,an+1-an=3•22n-1 (1)求数列{an}的通项公...

设数列满足a1=2,an+1-an=3•22n-1
(1)求数列{an}的通项公式;
(2)令bn=nan,求数列的前n项和Sn
(Ⅰ)由题意得an+1=[(an+1-an)+(an-an-1)+…+(a2-a1)]+a1=3(22n-1+22n-3+…+2)+2=22(n+1)-1.由此可知数列{an}的通项公式为an=22n-1. (Ⅱ)由bn=nan=n•22n-1知Sn=1•2+2•23+3•25++n•22n-1,由此入手可知答案. 【解析】 (Ⅰ)由已知,当n≥1时,an+1=[(an+1-an)+(an-an-1)+…+(a2-a1)]+a1 =3(22n-1+22n-3+…+2)+2=22(n+1)-1. 而a1=2, 所以数列{an}的通项公式为an=22n-1. (Ⅱ)由bn=nan=n•22n-1知Sn=1•2+2•23+3•25+…+n•22n-1① 从而22Sn=1•23+2•25+…+n•22n+1② ①-②得(1-22)•Sn=2+23+25+…+22n-1-n•22n+1. 即.
复制答案
考点分析:
相关试题推荐
已知{an}是等比数列,a1=2,a3=18;{bn}是等差数列,b1=2,b1+b2+b3+b4=a1+a2+a3>20.
(1)求数列{bn}的通项公式;
(2)求数列{bn}的前n项和Sn的公式;
(3)设Pn=b1+b4+b7+…+b3n-2,Qn=b10+b12+b14+…+b2n+8,其中n=1,2,…,试比较Pn与Qn的大小,并证明你的结论.
查看答案
已知△ABC中,2manfen5.com 满分网(sin2A-sin2C)=(a-b)sinB,外接圆半径为manfen5.com 满分网
(1)求∠C;
(2)求△ABC面积的最大值.
查看答案
已知函数f(x)=cos2x-sin2x+2manfen5.com 满分网sonxcosx+1.
(1)求f(x)的最小正周期,并求f(x)的最小值;
(2)若f(a)=2,且a∈[manfen5.com 满分网manfen5.com 满分网],求a的值.
查看答案
(文) 设二次函数f(x)满足:(1)f(2+x)=f(2-x),(2)被x轴截得的弦长为2,(3)在y轴截距为6,求此函数解析式.
查看答案
(理)若二次项系数为a的二次函数f(x)同时满足如下三个条件,求f(x)的解析式.
①f(3-x)=f(x);②f(1)=0;③对任意实数x,都有f(x)manfen5.com 满分网恒成立.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.