满分5 > 高中数学试题 >

已知f(x)=xlnx,g(x)=-x2+ax-3. (1)求函数f(x)在[t...

已知f(x)=xlnx,g(x)=-x2+ax-3.
(1)求函数f(x)在[t,t+2](t>0)上的最小值;
(2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;
(3)证明:对一切x∈(0,+∞),都有manfen5.com 满分网成立.
(1)对函数求导,根据导函数与0的关系写出函数的单调性和区间,讨论所给的区间和求出的单调区间之间的关系,在不同条件下做出函数的最值. (2)根据两个函数的不等关系恒成立,先求出两个函数的最值,利用最值思想解决,主要看两个函数的最大值和最小值之间的关系,得到结果. (3)要证明不等式成立,问题等价于证明,由(1)可知f(x)=xlnx(x∈(0,+∞))的最小值是,构造新函数,得到结论. 【解析】 (1)f'(x)=lnx+1,当,f'(x)<0,f(x)单调递减, 当,f'(x)>0,f(x)单调递增. ①,t无解; ②,即时,; ③,即时,f(x)在[t,t+2]上单调递增,f(x)min=f(t)=tlnt; ∴. (2)2xlnx≥-x2+ax-3,则, 设,则, x∈(0,1),h'(x)<0,h(x)单调递减,x∈(1,+∞),h'(x)>0,h(x)单调递增, 所以h(x)min=h(1)=4 因为对一切x∈(0,+∞),2f(x)≥g(x)恒成立,所以a≤h(x)min=4; (3)问题等价于证明, 由(1)可知f(x)=xlnx(x∈(0,+∞))的最小值是,当且仅当时取到 设,则,易得, 当且仅当x=1时取到,从而对一切x∈(0,+∞),都有成立.
复制答案
考点分析:
相关试题推荐
已知B2,B1分别是中心在原点,焦点在x轴上的椭圆C的上,下顶点,F是C的右焦点,FB1=2,F到C的左准线的距离是manfen5.com 满分网
(1)求椭圆C的方程;
(2)点P是C上与B1,B2不重合的动点,直线B1P,B2P与x轴分别交于点M,N.求证:manfen5.com 满分网是定值.

manfen5.com 满分网 查看答案
某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产,已知该厂连续生产n个月的累计产量为manfen5.com 满分网吨,但如果产量超过96吨,将会给环境造成危害.
(1)请你代表环保部门给厂拟定最长的生产周期;
(2)若该厂在环保部门的规定下生产,但需要每月交纳a万元的环保税,已知每吨产品售价0.6万元,第n个月的工人工资为manfen5.com 满分网万元,若每月都赢利,求出a的范围.
查看答案
已知平面直角坐标系中△ABC顶点的分别为manfen5.com 满分网,B(0,0),C(c,0),其中c>0.
(1)若c=4m,求sin∠A的值;
(2)若manfen5.com 满分网,B=manfen5.com 满分网,求△ABC周长的最大值.
查看答案
一个四棱锥的三视图和直观图如图所示,E为侧棱PD的中点.
(1)求证:PB∥平面AEC;
(2)若F为侧棱PA上的一点,且manfen5.com 满分网,则λ为何值时,PA⊥平面BDF?并求此时几何体F-BDC的体积.
manfen5.com 满分网
查看答案
设函数manfen5.com 满分网manfen5.com 满分网,数列{an}满manfen5.com 满分网,则数列{an}的前n项和Sn等于    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.