(Ⅰ)分别取n=1,n=2,根据方程x2-anx-an=0有一根为Sn-1,即可求得a1,a2;
(Ⅱ)由题设(Sn-1)2-an(Sn-1)-an=0,即Sn2-2Sn+1-anSn=0,当n≥2时,an=Sn-Sn-1,代入上式得Sn-1Sn-2Sn+1=0,通过计算猜想Sn=,n=1,2,3,….再用数学归纳法证明这个结论,进而利用当n≥2时,an=Sn-Sn-1=-=,n=1时,a1==,即可求得{an}的通项公式.
【解析】
(Ⅰ)当n=1时,x2-a1x-a1=0有一根为S1-1=a1-1,
于是(a1-1)2-a1(a1-1)-a1=0,解得a1=.
当n=2时,x2-a2x-a2=0有一根为S2-1=a2-,
于是(a2-)2-a2(a2-)-a2=0,解得a2=.
(Ⅱ)由题设(Sn-1)2-an(Sn-1)-an=0,
即Sn2-2Sn+1-anSn=0.
当n≥2时,an=Sn-Sn-1,代入上式得
Sn-1Sn-2Sn+1=0 ①
由(Ⅰ)知S1=a1=,S2=a1+a2=+=.
由①可得S3=.
由此猜想Sn=,n=1,2,3,….
下面用数学归纳法证明这个结论.
(i)n=1时已知结论成立.
(ii)假设n=k时结论成立,即Sk=,
当n=k+1时,由①得Sk+1=,即Sk+1=,
故n=k+1时结论也成立.
综上,由(i)、(ii)可知Sn=对所有正整数n都成立.
于是当n≥2时,an=Sn-Sn-1=-=,
又n=1时,a1==,所以{an}的通项公式an=,n=1,2,3,….