当n≥2时,-(2n-5)•2n=2n(2n-1),所以.由a1=-4,求出an;当n≥2时,bn=Sn-Sn-1=4n-1,由b1=1,求出bn.由此能求出.
【解析】
当n≥2时,-(2n-5)•2n=2n(2n-1),
∴.
∵a1=-4,∴,
当n≥2时,bn=Sn-Sn-1=4n-1,
∵b1=1,∴.
①,
记s=22×7+23×11+24×15+…+2n×(4n-1),
∴2s=23×7+24×11+…+2n(4n-5)+2n+1(4n-1)②,
①-②得-s=28+4(23+24+…+2n)-2n+1(4n-1)
=28+32(2n-2-1)-2n+1(4n-1)
=-4+2n+1(5-4n),
∴s=4+2n+1(4n-5),
∴.