(I)由题意可得,b1=a4,b2=a5,b3=a9,b4=a10,代入可求
(II)由,可得n=5k或n+1=5k,则n=5k-1或n=5k,从而可得b2n-1=a5k-1,可求
(III)由题意可得,,代入可求
【解析】
(I)∵an=1+2+3+…+n=
由题意可得,b1=a4=10,b2=a5=15,b3=a9=45,b4=a10=55;
(II)∵,
∴n=5k或n+1=5k(k∈N+),
即n=5k-1或n=5k
∵b2k-1<b2k,
∴b2k=a5k=
(III)由(II)可得,b2n-1+b2n==25n2
∴b1+b2+…+b2n=(b1+b2)+(b3+b4)+…+(b2n-1+b2n)
=25×12+25×22+…+25n2
=25(12+22+…+n2)
∴.