满分5 > 高中数学试题 >

如图,△ABC的角平分线AD的延长线交它的外接圆于点E. (1)证明:△ABE∽...

如图,△ABC的角平分线AD的延长线交它的外接圆于点E.
(1)证明:△ABE∽△ADC;
(2)若△ABC的面积S=manfen5.com 满分网AD•AE,求∠BAC的大小.

manfen5.com 满分网
(1)要判断两个三角形相似,可以根据三角形相似判定定理进行证明,但注意观察已知条件中给出的是角的关系,故采用判定定理1更合适,故需要再找到一组对应角相等,由圆周角定理,易得满足条件的角. (2)根据(1)的结论,我们可得三角形对应对成比例,由此我们可以将△ABC的面积转化为S=AB•AC,再结合三角形面积公式,不难得到∠BAC的大小. 证明:(1)由已知△ABC的角平分线为AD, 可得∠BAE=∠CAD 因为∠AEB与∠ACB是同弧上的圆周角, 所以∠AEB=∠ACD 故△ABE∽△ADC. 【解析】 (2)因为△ABE∽△ADC, 所以, 即AB•AC=AD•AE. 又S=AB•ACsin∠BAC, 且S=AD•AE, 故AB•ACsin∠BAC=AD•AE. 则sin∠BAC=1, 又∠BAC为三角形内角, 所以∠BAC=90°.
复制答案
考点分析:
相关试题推荐
设a为实数,函数f(x)=ex-2x+2a,x∈R.
(1)求f(x)的单调区间及极值;
(2)求证:当a>ln2-1且x>0时,ex>x2-2ax+1.
查看答案
在直角坐标系xOy中,椭圆C1manfen5.com 满分网=1(a>b>0)的左、右焦点分别为F1,F2.F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且|MF2|=manfen5.com 满分网
(Ⅰ)求C1的方程;
(Ⅱ)平面上的点N满足manfen5.com 满分网,直线l∥MN,且与C1交于A,B两点,若manfen5.com 满分网,求直线l的方程.
查看答案
某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为manfen5.com 满分网.甲、乙、丙三位同学每人购买了一瓶该饮料.
(Ⅰ)求甲中奖且乙、丙都没有中奖的概率;
(Ⅱ)求中奖人数ξ的分布列及数学期望Eξ.
查看答案
如图,已知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点
(1)证明:PE⊥BC
(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值

manfen5.com 满分网 查看答案
记等差数列{an}的前n项和为Sn,设S3=12,且2a1,a2,a3+1成等比数列,求Sn
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.