满分5 > 高中数学试题 >

在平面直角坐标系xOy中,已知点A(-1,0)、B(1,0),动点C满足条件:△...

在平面直角坐标系xOy中,已知点A(-1,0)、B(1,0),动点C满足条件:△ABC的周长为manfen5.com 满分网.记动点C的轨迹为曲线W.
(Ⅰ)求W的方程;
(Ⅱ)经过点(0,manfen5.com 满分网)且斜率为k的直线l与曲线W有两个不同的交点P和Q,求k的取值范围;
(Ⅲ)已知点M(manfen5.com 满分网),N(0,1),在(Ⅱ)的条件下,是否存在常数k,使得向量manfen5.com 满分网manfen5.com 满分网共线?如果存在,求出k的值;如果不存在,请说明理由.
(Ⅰ)利用条件找到,得动点C的轨迹是以A、B为焦点,长轴长为的椭圆除去与x轴的两个交点.代入椭圆的方程即可. (Ⅱ)直线l与曲线W有两个不同的交点P和Q,等价于把直线方程和椭圆方程联立后对应的方程有两个不等根,利用其判别式大于0即可. (Ⅲ)先把直线方程和椭圆方程联立后找到向量的坐标,利用向量与共线求出对应的k的取值,看其是否让(Ⅱ)成立即可. 【解析】 (Ⅰ)设C(x,y), ∵|AC|+|BC|+|AB|=2+2,|AB|=2, ∴|AC|+|BC|=2>2, ∴由定义知,动点C的轨迹是以A、B为焦点,长轴长为2的椭圆除去与x轴的两个交点. ∴a=,c=1.∴b2=a2-c2=1. ∴W:=1(y≠0).(2分) (Ⅱ)设直线l的方程为y=kx+,代入椭圆方程,得=1. 整理,得kx+1=0.①(5分) 因为直线l与椭圆有两个不同的交点P和Q等价于-2>0,解得k<-或k>. ∴满足条件的k的取值范围为(7分) (Ⅲ)设P(x1,y1),Q(x2,y2),则=(x1+x2,y1+y2), 由①得x1+x2=-.② 又y1+y2=k(x1+x2)+2③ 因为,N(0,1),所以.(11分) 所以与共线等价于x1+x2=-. 将②③代入上式,解得k=. 所以不存在常数k,使得向量与共线.(13分)
复制答案
考点分析:
相关试题推荐
设数列{an}是等差数列,{bn}是各项均为正数的等比数列,且a1=b1,a3+b5=21,a5+b3=13,
(1)求数列{an},{bn}的通项公式;
(2)若数列{manfen5.com 满分网}的前n项和为Sn,试比较Sn与4的大小关系.
查看答案
(1)已知a,b是正常数,a≠b,x,y∈(0,+∞),求证:manfen5.com 满分网,指出等号成立的条件;
(2)利用(1)的结论求函数manfen5.com 满分网manfen5.com 满分网)的最小值,指出取最小值时x的值.
查看答案
manfen5.com 满分网中华人民共和国《道路交通安全法》中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q(简称血酒含量,单位是毫克/100毫升),当20≤Q≤80时,为酒后驾车;当Q>80时,为醉酒驾车.济南市公安局交通管理部门于2011年2月的某天晚上8点至11点在市区设点进行一次拦查行动,共依法查出了60名饮酒后违法驾驶机动车者,如图,为这60名驾驶员抽血检测后所得结果画出的频率分布直方图(其中Q≥140的人数计入120≤Q<140人数之内).
(1)求此次拦查中醉酒驾车的人数;
(2)从违法驾车的60人中按酒后驾车和醉酒驾车利用分层抽样抽取8人做样本进行研究,再从抽取的8人中任取3人,求3人
中含有醉酒驾车人数x的分布列和期望.
查看答案
一个几何体是由圆柱ADD1A1和三棱锥E-ABC组合而成,点A、B、C在圆O的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图所示,其中EA⊥平面ABC,AB⊥AC,AB=AC,AE=2.
manfen5.com 满分网
(1)求证:AC⊥BD;

(2)求二面角A-BD-C的平面角的大小.
查看答案
已知函数f(x)=x2+bsinx-2,(b∈R),且对任意x∈R,有f(-x)=f(x)
(1)求b的值;
(2)已知g(x)=f(x)+2(x+1)+alnx在区间(0,1)上为单调增函数,求实数a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.