满分5 > 高中数学试题 >

已知函数,a为正常数. (1)若f(x)=lnx+φ(x),且,求函数f(x)的...

已知函数manfen5.com 满分网,a为正常数.
(1)若f(x)=lnx+φ(x),且manfen5.com 满分网,求函数f(x)的单调增区间;
(2)若g(x)=|lnx|+φ(x),且对任意x1,x2∈(0,2],x1≠x2,都有manfen5.com 满分网,求a的取值范围.
(1)先对函数y=f(x)进行求导,然后令导函数大于0(或小于0)求出x的范围,根据f′(x)>0求得的区间是单调增区间,f′(x)<0求得的区间是单调减区间,即可得到答案. (2)设h(x)=g(x)+x,依题意得出h(x)在(0,2]上是减函数.下面对x分类讨论:①当1≤x≤2时,②当0<x<1时,利用导数研究函数的单调性从及最值,即可求得求a的取值范围. 【解析】 (1),(2分) ∵,令f′(x)>0,得x>2,或, ∴函数f(x)的单调增区间为,(2,+∞).(6分) (2)∵, ∴, ∴,(8分) 设h(x)=g(x)+x,依题意,h(x)在(0,2]上是减函数. 当1≤x≤2时,,, 令h′(x)≤0,得:对x∈[1,2]恒成立, 设,则, ∵1≤x≤2,∴, ∴m(x)在[1,2]上递增,则当x=2时,m(x)有最大值为, ∴(12分) 当0<x<1时,,, 令h′(x)≤0,得:, 设,则, ∴t(x)在(0,1)上是增函数, ∴t(x)<t(1)=0, ∴a≥0,(15分)综上所述,(16分)
复制答案
考点分析:
相关试题推荐
如图,已知F1,F2分别是椭圆C:manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的左、右焦点,且椭圆C的离心率e=manfen5.com 满分网,F1也是抛物线C1:y2=-4x的焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点F2的直线l交椭圆C于D,E两点,且2manfen5.com 满分网=manfen5.com 满分网,点E关于x轴的对称点为G,求直线GD的方程.

manfen5.com 满分网 查看答案
如图,四棱锥P-ABCD的底面ABCD为菱形,PA⊥平面ABCD,PA=PB=2,E、F分别为CD、PB的中点,AE=manfen5.com 满分网
(Ⅰ)求证:平面AEF⊥平面PAB.
(Ⅱ)求平面PAB与平面PCD所成的锐二面角的余弦值.

manfen5.com 满分网 查看答案
为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15)…第五组[17,18],如图是按上述分组方法得到的频率分布直方图,根据有关规定,成绩小于16秒为达标.
(Ⅰ)用样本估计总体,某班有学生45人,设ξ为达标人数,求ξ的数学期望与方差;
(Ⅱ)如果男女生使用相同的达标标准,则男女生达标情况如表:
性别
是否达标
合计
达标a=24b=____________
不达标c=______d=12______
合计____________
根据表中所给的数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?
附:
P(K2≥K)0.0500.0100.001
K3.8416.62510.828
K2=manfen5.com 满分网

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网(x∈R ).
(Ⅰ)求函数f(x)的最小正周期及单调递增区间;
(Ⅱ)△ABC内角A、B、C的对边长分别为a、b、c,若manfen5.com 满分网manfen5.com 满分网,且a>b,试判断△ABC的形状,并说明理由.
查看答案
已知双曲线manfen5.com 满分网-manfen5.com 满分网=1(a>0,b>0)与抛物线y2=8x有 一个公共的焦点F,且两曲线的一个交点为P,若|PF|=5,则双曲线方程为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.