满分5 > 高中数学试题 >

在直角坐标系中,以原点为极点,x轴的正半轴为极轴建坐标系,已知曲线C:ρsin2...

在直角坐标系中,以原点为极点,x轴的正半轴为极轴建坐标系,已知曲线C:ρsin2θ=2acosθ(a>0),已知过点P(-2,-4)的直线L的参数方程为:manfen5.com 满分网,直线L与曲线C分别交于M,N.
(Ⅰ)写出曲线C和直线L的普通方程;    
(Ⅱ)若|PM|,|MN|,|PN|成等比数列,求a的值.
(1)消去参数可得直线l的普通方程,曲线C的方程可化为ρ2sin2θ=2aρcosθ,从而得到y2=2ax. (II)写出直线l的参数方程为,代入y2=2ax得到,则有,由|BC|2=|AB|,|AC|,代入可求a的值. 【解析】 (Ⅰ)根据极坐标与直角坐标的转化可得,C:ρsin2θ=2acosθ⇒ρ2sin2θ=2aρcosθ, 即 y2=2ax, 直线L的参数方程为:,消去参数t得:直线L的方程为y+4=x+2即y=x-2(3分) (Ⅱ)直线l的参数方程为(t为参数), 代入y2=2ax得到, 则有…(8分) 因为|MN|2=|PM|•|PN|,所以 即:[2(4+a)]2-4×8(4+a)=8(4+a) 解得 a=1…(10分)
复制答案
考点分析:
相关试题推荐
如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于D,DE⊥AC交AC延长线于点E,OE交AD于点F.
(Ⅰ)求证:DE是⊙O的切线;
(Ⅱ)若manfen5.com 满分网,求manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网,a为正常数.
(1)若f(x)=lnx+φ(x),且manfen5.com 满分网,求函数f(x)的单调增区间;
(2)若g(x)=|lnx|+φ(x),且对任意x1,x2∈(0,2],x1≠x2,都有manfen5.com 满分网,求a的取值范围.
查看答案
如图,已知F1,F2分别是椭圆C:manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的左、右焦点,且椭圆C的离心率e=manfen5.com 满分网,F1也是抛物线C1:y2=-4x的焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点F2的直线l交椭圆C于D,E两点,且2manfen5.com 满分网=manfen5.com 满分网,点E关于x轴的对称点为G,求直线GD的方程.

manfen5.com 满分网 查看答案
如图,四棱锥P-ABCD的底面ABCD为菱形,PA⊥平面ABCD,PA=PB=2,E、F分别为CD、PB的中点,AE=manfen5.com 满分网
(Ⅰ)求证:平面AEF⊥平面PAB.
(Ⅱ)求平面PAB与平面PCD所成的锐二面角的余弦值.

manfen5.com 满分网 查看答案
为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15)…第五组[17,18],如图是按上述分组方法得到的频率分布直方图,根据有关规定,成绩小于16秒为达标.
(Ⅰ)用样本估计总体,某班有学生45人,设ξ为达标人数,求ξ的数学期望与方差;
(Ⅱ)如果男女生使用相同的达标标准,则男女生达标情况如表:
性别
是否达标
合计
达标a=24b=____________
不达标c=______d=12______
合计____________
根据表中所给的数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?
附:
P(K2≥K)0.0500.0100.001
K3.8416.62510.828
K2=manfen5.com 满分网

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.